Description

有一个长为 \(n\) 的序列,保证序列元素不超过 \(10^6\) 且其质因数集是前60个质数集合的子集。初始时全部都是 \(3\),有 \(m\) 次操作,要么要求支持单点修改,要么要求查询区间 \([l,~r]\) 的区间积 \(x\) 的欧拉函数值 \(\phi(x)\) 对一个质数取模的结果。

Limitation

\(1 \leq n,~m \leq 10^5\)

Solution

考虑一个公式

\[\phi(x) = \prod_{i = 1}^{60} p_i^{c_i - 1} \times (p_i - 1)
\]

证明上,考虑 \(\phi(p) = p - 1\),其中 \(p\) 是一个质数,那么对于 \(p^k\),由于它有且仅有 \(p\) 一个因数,于是 \(p^k\) 共有 \(\frac{p^k}{p} = p^{k - 1}\) 个因数,于是 \(\phi(p^k)~=~p^k - p^{k - 1}~=~p^{k-1} \times (p - 1)\)

由于欧拉函数是积性的,将每个质因子的欧拉函数乘起来即可得到上式。

于是考虑用线段树维护区间积,再状压维护区间每个质因数的出现情况,对于出现的质因数 \(p\),查询时直接将区间积乘上 \(p^{-1} \times (p - 1)\) 即可。

Code

#include <cstdio>
#include <algorithm> const int maxn = 100005;
const int MOD = 19961993; int n = 100000, q;
const int prm[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281};
const int inv[] = {9980997, 6653998, 11977196, 8555140, 5444180, 1535538, 10568114, 14708837, 3471651, 11701858, 17386252, 1618540, 16066970, 2321162, 18263100, 16948862, 12518538, 15380552, 10725847, 1686929, 13399146, 17182475, 12025297, 15924736, 13582387, 395287, 6395590, 15857658, 16299242, 6359573, 3300802, 18742940, 6702567, 10914471, 16210746, 11765678, 5340151, 18247466, 7769638, 8077107, 11932588, 6506948, 1985748, 6619521, 5877135, 4413707, 9744480, 10115270, 14597757, 16475182, 18334191, 5011379, 18885205, 7555336, 621385, 11309266, 12170137, 12006660, 18304499, 11153142}; struct Tree {
int l, r;
ll v, oc;
Tree *ls, *rs; Tree() : v(3), oc(2), ls(NULL), rs(NULL) {} inline void pushup() {
this->v = this->ls->v * this->rs->v % MOD;
this->oc = this->ls->oc | this->rs->oc;
} inline bool inrange(const int l, const int r) { return (this->l >= l) && (this->r <= r); }
inline bool outofrange(const int l, const int r) { return (this->l > r) || (this->r < l); }
};
Tree *rot; void build(Tree *const u, const int l, const int r);
void update(Tree *const u, const int p, const int v);
std::pair<ll, ll> query(Tree *const u, const int l, const int r); int main() {
freopen("1.in", "r", stdin);
qr(q);
build(rot = new Tree, 1, n);
int a, b, c;
while (q--) {
a = b = c = 0; qr(a); qr(b); qr(c);
if (a == 0) {
auto _ret = query(rot, b, c);
for (int i = 0; i < 60; ++i) if (_ret.second & (1ll << i)) {
_ret.first = _ret.first * inv[i] % MOD * (prm[i] - 1) % MOD;
}
qw(_ret.first, '\n', true);
} else {
update(rot, b, c);
}
}
return 0;
} void build(Tree *const u, const int l, const int r) {
if ((u->l = l) == (u->r = r)) return;
int mid = (l + r) >> 1;
build(u->ls = new Tree, l, mid);
build(u->rs = new Tree, mid + 1, r);
u->pushup();
} std::pair<ll, ll> query(Tree *const u, const int l, const int r) {
if (u->inrange(l, r)) {
return std::make_pair(u->v, u->oc);
} else if (u->outofrange(l, r)) {
return std::make_pair(1ll, 0ll);
} else {
auto lr = query(u->ls, l, r), rr = query(u->rs, l, r);
return std::make_pair(lr.first * rr.first % MOD, lr.second | rr.second);
}
} void update(Tree *const u, const int p, const int v) {
if (u->outofrange(p, p)) {
return;
} else if (u->l == u->r) {
u->v = v; u->oc = 0;
for (int i = 0; i < 60; ++i) if (!(v % prm[i])) {
u->oc |= 1ll << i;
}
} else {
update(u->ls, p, v); update(u->rs, p, v);
u->pushup();
}
}

【数论&线段树】【P4140】[清华集训2015]奇数国的更多相关文章

  1. 「清华集训2015」V

    「清华集训2015」V 题目大意: 你有一个序列,你需要支持区间加一个数并对 \(0\) 取 \(\max\),区间赋值,查询单点的值以及单点历史最大值. 解题思路: 观察发现,每一种修改操作都可以用 ...

  2. 清华集训2015 V

    #164. [清华集训2015]V http://uoj.ac/problem/164 统计 描述 提交 自定义测试 Picks博士观察完金星凌日后,设计了一个复杂的电阻器.为了简化题目,题目中的常数 ...

  3. 2018.07.28 uoj#164. 【清华集训2015】V(线段树)

    传送门 线段树好题. 要求支持的操作: 1.区间变成max(xi−a,0)" role="presentation" style="position: rela ...

  4. 【uoj#164】[清华集训2015]V 线段树维护历史最值

    题目描述 给你一个长度为 $n$ 的序列,支持五种操作: $1\ l\ r\ x$ :将 $[l,r]$ 内的数加上 $x$ :$2\ l\ r\ x$ :将 $[l,r]$ 内的数减去 $x$ ,并 ...

  5. UOJ #164 [清华集训2015]V (线段树)

    题目链接 http://uoj.ac/problem/164 题解 神仙线段树题. 首先赋值操作可以等价于减掉正无穷再加上\(x\). 假设某个位置从前到后的操作序列是: \(x_1,x_2,..., ...

  6. Bzoj 3813 奇数国 题解 数论+线段树+状压

    3813: 奇数国 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 748  Solved: 425[Submit][Status][Discuss] ...

  7. 【bzoj3813】: 奇数国 数论-线段树-欧拉函数

    [bzoj3813]: 奇数国 题意:给定一个序列,每个元素可以分解为最小的60个素数的形式.(x=p1^k1*p2^k2*......p60^k60)(p1=2,p2=3,…,p60=281) 支持 ...

  8. codeforces 446C DZY Loves Fibonacci Numbers(数学 or 数论+线段树)(两种方法)

    In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation F1 ...

  9. Codeforces 671C. Ultimate Weirdness of an Array(数论+线段树)

    看见$a_i\leq 200000$和gcd,就大概知道是要枚举gcd也就是答案了... 因为答案是max,可以发现我们很容易算出<=i的答案,但是很难求出单个i的答案,所以我们可以运用差分的思 ...

随机推荐

  1. Laravel框架下路由的使用(源码解析)

    本篇文章给大家带来的内容是关于Laravel框架下路由的使用(源码解析),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助. 前言 我的解析文章并非深层次多领域的解析攻略.但是参考着开发文 ...

  2. CSS属性相关知识

    Css选择器 选择器的权重 在css中,哪个选择器的权重高,就走谁的样式. 标签选择器的权重是 1 Class选择器的权重是10 Id选择器的权重是100 行间样式的权重是1000 带有关键字 !im ...

  3. luogu P2495 [SDOI2011]消耗战 |虚树+LCA+dp

    题目描述 在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总部在编号为1的岛屿,而且他们已经没有足够多的能源维系战斗,我军胜利在望.已知 ...

  4. c语言课本及pta作业中运用到的程序思维

    c语言课本运用到的程序思维 我个人觉得在写程序的时候,有很多题目会用到我们学过的解决一个程序或者一个问题的方法,把这些方法运用起来,将会使自己更加灵活地解决诸多问题,为今后打下良好地基础. (因为还没 ...

  5. Prometheus 监控Docker服务器及Granfanna可视化

    Prometheus 监控Docker服务器及Granfanna可视化 cAdvisor(Container Advisor)用于收集正在运行的容器资源使用和性能信息. 使用Prometheus监控c ...

  6. POSIX 正则表达式 BRE与ERE的差异

    BRE,标准正则表达式,basic regular expressions ERE,扩展正则表达式,Extended Regular Expressions POSIX 正则表达式 传统上,POSIX ...

  7. 阿里云 centos 无法执行moodle cron

    在阿里云服务器安装moodle时,在执行cron计划任务时,报错sendmail: fatal: parameter inet_interfaces: no local interface found ...

  8. 微服务架构 ------ 插曲 Linux平台 Ubuntu的安装

    1.一定要通过自定义安装 2.选择的硬件兼容性选择 14.x   这里介绍一下红框内的东西,是为了做虚拟存储使用的,也就是一批服务器对外展示位一个服务器,类似于服务器集群 3.选择稍后安装操作系统,如 ...

  9. 【开发笔记】- yml中出现特殊字符启动失败的问题

    问题描述: yml配置中出现特殊字符,启动时抛出异常: Caused by: org.yaml.snakeyaml.constructor.ConstructorException: Can't co ...

  10. QML官方文档:Qt Quick Controls 1和2对比

    Qt Quick Controls有1和2两个版本,在程序中会看到好多1和2版本混合使用的情况. 原文:https://doc.qt.io/qt-5/qtquickcontrols2-differen ...