[LeetCode] 737. Sentence Similarity II 句子相似度之二
Given two sentences words1, words2 (each represented as an array of strings), and a list of similar word pairs pairs, determine if two sentences are similar.
For example, words1 = ["great", "acting", "skills"] and words2 = ["fine", "drama", "talent"] are similar, if the similar word pairs are pairs = [["great", "good"], ["fine", "good"], ["acting","drama"], ["skills","talent"]].
Note that the similarity relation is transitive. For example, if "great" and "good" are similar, and "fine" and "good" are similar, then "great" and "fine" are similar.
Similarity is also symmetric. For example, "great" and "fine" being similar is the same as "fine" and "great" being similar.
Also, a word is always similar with itself. For example, the sentences words1 = ["great"], words2 = ["great"], pairs = [] are similar, even though there are no specified similar word pairs.
Finally, sentences can only be similar if they have the same number of words. So a sentence like words1 = ["great"] can never be similar to words2 = ["doubleplus","good"].
Note:
- The length of
words1andwords2will not exceed1000. - The length of
pairswill not exceed2000. - The length of each
pairs[i]will be2. - The length of each
words[i]andpairs[i][j]will be in the range[1, 20].
这道题是之前那道 Sentence Similarity 的拓展,那道题说单词之间不可传递,于是乎这道题就变成可以传递了,难度就增加了。不过没有关系,还是用经典老三样来解,BFS,DFS,和 Union Find。先来看 BFS 的解法,其实这道题的本质是无向连通图的问题,首先要做的就是建立这个连通图的数据结构,对于每个结点来说,要记录所有和其相连的结点,建立每个结点和其所有相连结点集合之间的映射,比如对于这三个相似对 (a, b), (b, c),和(c, d),我们有如下的映射关系:
a -> {b}
b -> {a, c}
c -> {b, d}
d -> {c}
那么如果要验证a和d是否相似,就需要用到传递关系,a只能找到b,b可以找到a,c,为了不陷入死循环,将访问过的结点加入一个集合 visited,那么此时b只能去,c只能去d,那么说明a和d是相似的了。用for循环来比较对应位置上的两个单词,如果二者相同,那么直接跳过去比较接下来的。否则就建一个访问即可 visited,建一个队列 queue,然后把 words1 中的单词放入 queue,建一个布尔型变量 succ,标记是否找到,然后就是传统的 BFS 遍历的写法了,从队列中取元素,如果和其相连的结点中有 words2 中的对应单词,标记 succ 为 true,并 break 掉。否则就将取出的结点加入队列 queue,并且遍历其所有相连结点,将其中未访问过的结点加入队列 queue 继续循环,参见代码如下:
解法一:
class Solution {
public:
bool areSentencesSimilarTwo(vector<string>& words1, vector<string>& words2, vector<pair<string, string>> pairs) {
if (words1.size() != words2.size()) return false;
unordered_map<string, unordered_set<string>> m;
for (auto pair : pairs) {
m[pair.first].insert(pair.second);
m[pair.second].insert(pair.first);
}
for (int i = ; i < words1.size(); ++i) {
if (words1[i] == words2[i]) continue;
unordered_set<string> visited;
queue<string> q{{words1[i]}};
bool succ = false;
while (!q.empty()) {
auto t = q.front(); q.pop();
if (m[t].count(words2[i])) {
succ = true; break;
}
visited.insert(t);
for (auto a : m[t]) {
if (!visited.count(a)) q.push(a);
}
}
if (!succ) return false;
}
return true;
}
};
下面来看递归的写法,解题思路跟上面的完全一样,把主要操作都放到了一个递归函数中来写,参见代码如下:
解法二:
class Solution {
public:
bool areSentencesSimilarTwo(vector<string>& words1, vector<string>& words2, vector<pair<string, string>> pairs) {
if (words1.size() != words2.size()) return false;
unordered_map<string, unordered_set<string>> m;
for (auto pair : pairs) {
m[pair.first].insert(pair.second);
m[pair.second].insert(pair.first);
}
for (int i = ; i < words1.size(); ++i) {
unordered_set<string> visited;
if (!helper(m, words1[i], words2[i], visited)) return false;
}
return true;
}
bool helper(unordered_map<string, unordered_set<string>>& m, string& cur, string& target, unordered_set<string>& visited) {
if (cur == target) return true;
visited.insert(cur);
for (string word : m[cur]) {
if (!visited.count(word) && helper(m, word, target, visited)) return true;
}
return false;
}
};
下面这种解法就是碉堡了的联合查找 Union Find 了,这种解法的核心是一个 getRoot 函数,如果两个元素属于同一个群组的话,调用 getRoot 函数会返回相同的值。主要分为两部,第一步是建立群组关系,suppose 开始时每一个元素都是独立的个体,各自属于不同的群组。然后对于每一个给定的关系对,对两个单词分别调用 getRoot 函数,找到二者的祖先结点,如果从未建立过联系的话,那么二者的祖先结点时不同的,此时就要建立二者的关系。等所有的关系都建立好了以后,第二步就是验证两个任意的元素是否属于同一个群组,就只需要比较二者的祖先结点都否相同啦。是不是有点深度学习的赶脚,先建立模型 training,然后再 test。哈哈,博主乱扯的,二者并没有什么联系。这里保存群组关系的数据结构,有时用数组,有时用 HashMap,看输入的数据类型吧,如果输入元素的整型数的话,用 root 数组就可以了,如果是像本题这种的字符串的话,需要用 HashMap 来建立映射,建立每一个结点和其祖先结点的映射。注意这里的祖先结点不一定是最终祖先结点,而最终祖先结点的映射一定是最重祖先结点,所以 getRoot 函数的设计思路就是要找到最终祖先结点,那么就是当结点和其映射结点相同时返回,否则继续循环,可以递归写,也可以迭代写,这无所谓。注意这里第一行判空是相当于初始化,这个操作可以在外面写,就是要让初始时每个元素属于不同的群组,参见代码如下:
解法三:
class Solution {
public:
bool areSentencesSimilarTwo(vector<string>& words1, vector<string>& words2, vector<pair<string, string>> pairs) {
if (words1.size() != words2.size()) return false;
unordered_map<string, string> m;
for (auto pair : pairs) {
string x = getRoot(pair.first, m), y = getRoot(pair.second, m);
if (x != y) m[x] = y;
}
for (int i = ; i < words1.size(); ++i) {
if (getRoot(words1[i], m) != getRoot(words2[i], m)) return false;
}
return true;
}
string getRoot(string word, unordered_map<string, string>& m) {
if (!m.count(word)) m[word] = word;
return word == m[word] ? word : getRoot(m[word], m);
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/737
类似题目:
参考资料:
https://leetcode.com/problems/sentence-similarity-ii/
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 737. Sentence Similarity II 句子相似度之二的更多相关文章
- [LeetCode] 737. Sentence Similarity II 句子相似度 II
Given two sentences words1, words2 (each represented as an array of strings), and a list of similar ...
- [LeetCode] Sentence Similarity II 句子相似度之二
Given two sentences words1, words2 (each represented as an array of strings), and a list of similar ...
- LeetCode 737. Sentence Similarity II
原题链接在这里:https://leetcode.com/problems/sentence-similarity-ii/ 题目: Given two sentences words1, words2 ...
- [LeetCode] 734. Sentence Similarity 句子相似度
Given two sentences words1, words2 (each represented as an array of strings), and a list of similar ...
- LeetCode 734. Sentence Similarity
原题链接在这里:https://leetcode.com/problems/sentence-similarity/ 题目: Given two sentences words1, words2 (e ...
- [LeetCode] Number of Islands II 岛屿的数量之二
A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...
- [LeetCode] Shortest Word Distance II 最短单词距离之二
This is a follow up of Shortest Word Distance. The only difference is now you are given the list of ...
- [LeetCode] 685. Redundant Connection II 冗余的连接之二
In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...
- [LeetCode] Pascal's Triangle II 杨辉三角之二
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3, ...
随机推荐
- python-7-数据结构与类型转换
前言 python除了前面所说的基础类型,我们这里也需要讲解下数据结构,数据结构里面存放的是基础类型,如数字等同时也可以嵌套. 不可变数据(3 个):Number(数字).String(字符串).Tu ...
- 十、自定义ThreadPoolExecutor线程池
自定义ThreadPoolExecutor线程池 自定义线程池需要遵循的规则 [1]线程池大小的设置 1.计算密集型: 顾名思义就是应用需要非常多的CPU计算资源,在多核CPU时代,我们要让每一个CP ...
- springboot单元测试@test的使用
@RunWith(SpringRunner.class) @SpringBootTest(classes = Application.class) public class Springtest { ...
- Kubernetes 有状态与无状态介绍
Kubernetes 有状态与无状态介绍 无状态:deployment - 认为所有pod都是一样的,不具备与其他实例有不同的关系. - 没有顺序的要求. - 不用考虑再哪个Node运行. - 随意扩 ...
- [Delphi]无边框窗口最大化不挡任务栏方法
procedure WMGetMinMaxInfo(var mes: TWMGetMinMaxInfo); message WM_GetMinMaxInfo; procedure TfrmMain.W ...
- 将VMWare中的虚拟机时间设定在一个固定值
1.关闭虚拟机 2.用记事本打开虚拟机的.vmx文件 在末尾添加添加: tools.syncTime = "FALSE" time.synchronize.continue = ...
- 使用三层架构+EF添加单元测试
在运行测试的时候抛异常了: “System.InvalidOperationException”类型的异常在 mscorlib.dll 中发生,但未在用户代码中进行处理 The Entity Fram ...
- C++调用linux命令并获取返回值
qt中封装了相关的方法, 但是因为我的命令中用到了管道命令, 出现了非预期结果, 所有改用了linux系统原生的方法. 下边是一个判断某进程是否存在的例子. 当前存在一个问题,当linux返回多行时, ...
- WPF ValidationRules(MVVM 数据验证)
对于WPF中的验证, View验证实现起来很简单, 可以通道 Validation.ErrorEvent 冒泡传递到View的逻辑树上, 只是, 通常这样做的情况下, 我们需要为View添加事件代码监 ...
- ActiveMQ反序列化(CVE-2015-5254) && ActiveMQ任意文件写入 (CVE-2016-3088)
ActiveMQ 反序列化漏洞(CVE-2015-5254) 漏洞详情 ActiveMQ启动后,将监听61616和8161两个端口,其中消息在61616这个端口进行传递,使用ActiveMQ这个中间件 ...