[LeetCode] 52. N-Queens II N皇后问题之二
The n-queens puzzle is the problem of placing nqueens on an n×n chessboard such that no two queens attack each other.

Given an integer n, return the number of distinct solutions to the n-queens puzzle.
Example:
Input: 4
Output: 2
Explanation: There are two distinct solutions to the 4-queens puzzle as shown below.
[
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."], ["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
]

这道题是之前那道 N-Queens 的延伸,说是延伸其实我觉得两者顺序应该颠倒一样,上一道题比这道题还要稍稍复杂一些,两者本质上没有啥区别,都是要用回溯法 Backtracking 来解,如果理解了之前那道题的思路,此题只要做很小的改动即可,不再需要求出具体的皇后的摆法,只需要每次生成一种解法时,计数器加一即可,代码如下:
解法一:
class Solution {
public:
int totalNQueens(int n) {
int res = ;
vector<int> pos(n, -);
helper(pos, , res);
return res;
}
void helper(vector<int>& pos, int row, int& res) {
int n = pos.size();
if (row == n) ++res;
for (int col = ; col < n; ++col) {
if (isValid(pos, row, col)) {
pos[row] = col;
helper(pos, row + , res);
pos[row] = -;
}
}
}
bool isValid(vector<int>& pos, int row, int col) {
for (int i = ; i < row; ++i) {
if (col == pos[i] || abs(row - i) == abs(col - pos[i])) {
return false;
}
}
return true;
}
};
但是其实我们并不需要知道每一行皇后的具体位置,而只需要知道会不会产生冲突即可。对于每行要新加的位置,需要看跟之前的列,对角线,及逆对角线之间是否有冲突,所以我们需要三个布尔型数组,分别来记录之前的列 cols,对角线 diag,及逆对角线 anti_diag 上的位置,其中 cols 初始化大小为n,diag 和 anti_diag 均为 2n。列比较简单,是哪列就直接去 cols 中查找,而对角线的话,需要处理一下,如果我们仔细观察数组位置坐标的话,可以发现所有同一条主对角线的数,其纵坐标减去横坐标再加n,一定是相等的。同理,同一条逆对角线上的数字,其横纵坐标之和一定是相等的,根据这个,就可以快速判断主逆对角线上是否有冲突。任意一个有冲突的话,直接跳过当前位置,否则对于新位置,三个数组中对应位置都赋值为 true,然后对下一行调用递归,递归返回后记得还要还原状态,参见代码如下:
解法二:
class Solution {
public:
int totalNQueens(int n) {
int res = ;
vector<bool> cols(n), diag( * n), anti_diag( * n);
helper(n, , cols, diag, anti_diag, res);
return res;
}
void helper(int n, int row, vector<bool>& cols, vector<bool>& diag, vector<bool>& anti_diag, int& res) {
if (row == n) ++res;
for (int col = ; col < n; ++col) {
int idx1 = col - row + n, idx2 = col + row;
if (cols[col] || diag[idx1] || anti_diag[idx2]) continue;
cols[col] = diag[idx1] = anti_diag[idx2] = true;
helper(n, row + , cols, diag, anti_diag, res);
cols[col] = diag[idx1] = anti_diag[idx2] = false;
}
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/52
类似题目:
参考资料:
https://leetcode.com/problems/n-queens-ii/
https://leetcode.com/problems/n-queens-ii/discuss/20058/Accepted-Java-Solution
https://leetcode.com/problems/n-queens-ii/discuss/20048/Easiest-Java-Solution-(1ms-98.22)
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 52. N-Queens II N皇后问题之二的更多相关文章
- [Leetcode] n queens ii n皇后问题
Follow up for N-Queens problem. Now, instead outputting board configurations, return the total numbe ...
- [LeetCode] N-Queens II N皇后问题之二
Follow up for N-Queens problem. Now, instead outputting board configurations, return the total numbe ...
- lintcode 中等题:N Queens II N皇后问题 II
题目: N皇后问题 II 根据n皇后问题,现在返回n皇后不同的解决方案的数量而不是具体的放置布局. 样例 比如n=4,存在2种解决方案 解题: 和上一题差不多,这里只是求数量,这个题目定义全局变量,递 ...
- [LeetCode] Number of Islands II 岛屿的数量之二
A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...
- [LeetCode] 685. Redundant Connection II 冗余的连接之二
In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...
- [LeetCode] Shortest Word Distance II 最短单词距离之二
This is a follow up of Shortest Word Distance. The only difference is now you are given the list of ...
- [LeetCode] Pascal's Triangle II 杨辉三角之二
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3, ...
- LeetCode 598. Range Addition II (范围加法之二)
Given an m * n matrix M initialized with all 0's and several update operations. Operations are repre ...
- LeetCode 59. Spiral Matrix II (螺旋矩阵之二)
Given an integer n, generate a square matrix filled with elements from 1 to n2 in spiral order. For ...
随机推荐
- pycharm报错:ImportError: libcusolver.so.8.0: cannot open shared object file: No such file or directory
pycharm报错:ImportError: libcusolver.so.8.0: cannot open shared object file: No such file or directory ...
- Java & PHP RSA 互通密钥、签名、验签、加密、解密
RSA加密算法是一种非对称加密算法.在公开密钥加密和电子商业中RSA被广泛使用.RSA是1977年由罗纳德·李维斯特(Ron Rivest).阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Le ...
- css隐藏页面元素的方法
用css隐藏页面元素有许多种方法. 第一种方法[opacity: 0;] opacity属性通常用于设置一个元素的透明度,从另一个角度来看,如果透明度为0,也就从视觉上隐藏了该元素. 这个属性不是为改 ...
- 【LOJ#3146】[APIO2019]路灯(树套树)
[LOJ#3146][APIO2019]路灯(树套树) 题面 LOJ 题解 考场上因为\(\text{bridge}\)某个\(\text{subtask}\)没有判\(n=1\)的情况导致我卡了\( ...
- 『CSP2019初赛后的总结』
初赛已经过去了,分数大概也已经知道了,接下来的一个月停课应该就是全部准备复赛. 联赛前几次讲课的内容是组合计数,计数\(dp\),字符串,概率期望,数论,数据结构,多数知识点难度都是大于联赛难度的,不 ...
- jdbc:mysql:/// jdbc连接数据url简写方式
正常情况下我们写jdbc连接本地mysql数据库的时候通常是这样写 jdbc:mysql:localhost:3306/数据库名 下面就是要提到的简单的方法 jdbc:mysql:///数据库名
- WPF 动态资源 DataContext="{DynamicResource studentListKey}" DisplayMemberPath="Name"
public class StudentList:ObservableCollection<Student> { public List<Student> studentLis ...
- Python - 模块 - 第十六天
Python 模块 在前面的几个章节中我们脚本上是用 python 解释器来编程,如果你从 Python 解释器退出再进入,那么你定义的所有的方法和变量就都消失了. 为此 Python 提供了一个办法 ...
- Python itertools 操作迭代对象
Python 的内建模块itertools提供了很多操作迭代对象的方法 参考链接:https://www.liaoxuefeng.com/wiki/1016959663602400/101778314 ...
- Navicat for Mysql安装及破解教程
一.Navicat for Mysql安装 下载链接:https://navicatformysql.en.softonic.com/ 点击download下载. 下载完成后双击安装 二.破解 破解工 ...