https://loj.ac/problem/10131

#include<bits/stdc++.h>
using namespace std;
struct node{
int to,next;
}e[];
int head[],num=,N,n,m,ans;
int grand[][],depth[];
int f[],w[];
inline void add(int x,int y)
{
e[++num].to=y,e[num].next=head[x],head[x]=num;
}
inline void read(int &x)
{
x=;int f=;
char s=getchar();
while(s<''||s>''){if(s=='-')f=-;s=getchar();}
while(s>=''&&s<=''){x=x*+s-'';s=getchar();}
x*=f;
}
void dfs(int x)
{
for(int i=;i<=N;i++)grand[x][i]=grand[grand[x][i-]][i-];
for(int i=head[x];i;i=e[i].next)
{
int v=e[i].to;
if(v==grand[x][])continue;
depth[v]=depth[x]+;
grand[v][]=x;
dfs(v);
}
}
void init()
{
N=floor(log(n+0.0)/log(2.0));
depth[]=;
dfs();
}
inline int lca(int a,int b)
{
if(depth[a]>depth[b]) swap(a,b);
for(register int i=N;i>=;i--)
{
if(depth[a]<depth[b]&&depth[grand[b][i]]>=depth[a]) b=grand[b][i];
}
if(a==b)return a;
for(register int i=N;i>=;i--)
{
if(grand[a][i]!=grand[b][i]){a=grand[a][i],b=grand[b][i];}
}
return grand[a][];
}
void solve(int u,int fa)
{
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].to;if(v==fa) continue;
solve(v,u);f[u]+=f[v];
}
}
int main()
{
read(n),read(m);
for(int i=;i<n;i++)
{
int u,v;
read(u),read(v);
add(u,v);
add(v,u);
}
init();
for(int i=;i<=m;i++)
{
int x,y;
read(x),read(y);
w[x]++;w[y]++;
w[lca(x,y)]-=;
}
for(int i=;i<=n;i++) f[i]=w[i];
solve(,);
for(int i=;i<=n;i++)
{
if(f[i]==) ans+=m;
else if(f[i]==) ans++;
}
cout<<ans;
}

倍增法求lca:暗的连锁的更多相关文章

  1. HDU 2586 倍增法求lca

    How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  2. 倍增法求LCA

    倍增法求LCA LCA(Least Common Ancestors)的意思是最近公共祖先,即在一棵树中,找出两节点最近的公共祖先. 倍增法是通过一个数组来实现直接找到一个节点的某个祖先,这样我们就可 ...

  3. 倍增法求lca(最近公共祖先)

    倍增法求lca(最近公共祖先) 基本上每篇博客都会有参考文章,一是弥补不足,二是这本身也是我学习过程中找到的觉得好的资料 思路: 大致上算法的思路是这样发展来的. 想到求两个结点的最小公共祖先,我们可 ...

  4. 树上倍增法求LCA

    我们找的是任意两个结点的最近公共祖先, 那么我们可以考虑这么两种种情况: 1.两结点的深度相同. 2.两结点深度不同. 第一步都要转化为情况1,这种可处理的情况. 先不考虑其他, 我们思考这么一个问题 ...

  5. 倍增法求LCA(最近公共最先)

    对于有根树T的两个结点u.v,最近公共祖先x=LCA(u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. 如图,根据定义可以看出14和15的最近公共祖先是10,   15和16的最近公共 ...

  6. 在线倍增法求LCA专题

    1.cojs 186. [USACO Oct08] 牧场旅行 ★★   输入文件:pwalk.in   输出文件:pwalk.out   简单对比时间限制:1 s   内存限制:128 MB n个被自 ...

  7. 倍增法求LCA代码加详细注释

    #include <iostream> #include <vector> #include <algorithm> #define MAXN 100 //2^MA ...

  8. 浅谈倍增法求解LCA

    Luogu P3379 最近公共祖先 原题展现 题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入格式 第一行包含三个正整数 \(N,M,S\),分别表示树的结点个数.询问 ...

  9. RMQ(倍增法求ST)

    解决什么问题:区间查询最值 倍增思想:每次得出结果的范围呈2的幂次增长,有人说相当于二分,目前我觉得相当于线段树的查找. 具体理解看代码: /*倍增法求ST*/ #include<math.h& ...

随机推荐

  1. python+lego ev3的心得总结 随时更新

    一.连接方面 1.试了蓝牙连接,被电脑防火墙拒绝了很多次,很奇怪,明明都pin码都对上了,然后瞬间被踢开. 2.数据线直连,在一台win7上怎么试也不行,在另一台上自动上windows update上 ...

  2. windows server 守护进程nssm

    安装nssm 下载程序 https://nssm.cc/ci/nssm-2.24-101-g897c7ad.zip 安装nssm,以管理员运行cmd.exe,执行如下: C:\Users\prolds ...

  3. Springboot采用hibernate-validate验证请求参数

    在springboot项目使用hibernate-validate对请求参数添加注解进行校验 常用注解 @Null,标注的属性值必须为空 @NotNull,标注的属性值不能为空 @AssertTrue ...

  4. Java开发笔记(一百二十七)Swing的标签

    提起AWT的标签控件Label,那个使用体验可真叫糟糕,不但不支持文字换行,而且对中文很不友好,既可能把中文显示为乱码,还不支持博大精深的各种中文字体.所幸Swing的升级版标签JLabel在各方面都 ...

  5. STL源码剖析——Iterators与Traits编程#5 __type_traits

    上节给出了iterator_traits以及用到traits机制的部分函数的完整代码,可以看到traits机制能够提取迭代器的特性从而调用不同的函数,实现效率的最大化.显然这么好的机制不应该仅局限于在 ...

  6. 29 匿名内部类、函数型接口、lamda表达式的引入

    匿名内部类 参考:https://www.runoob.com/w3cnote/java-inner-class-intro.html 进入后搜索匿名内部类. 函数型接口 函数式接口(Function ...

  7. 爬虫解析库beautifulsoup

    一.介绍 Beautiful Soup是一个可以从HTML或XML文件中提取数据的python库. #安装Beautiful Soup pip install beautifulsoup4 #安装解析 ...

  8. xorm-Iterate/Count/Rows方法实例

    package main import ( "fmt" _ "github.com/go-sql-driver/mysql" "github.com/ ...

  9. Junit5中实现参数化测试

    从Junit5开始,对参数化测试支持进行了大幅度的改进和提升.下面我们就一起来详细看看Junit5参数化测试的方法. 部署和依赖 和Junit4相比,Junit5框架更多在向测试平台演进.其核心组成也 ...

  10. Centos7 在线安装开发环境 jdk1.8+mysql+tomcat

    写在最前 刚刚开始接触Linux,并折腾着在服务器上部署自己的项目,当然作为一个后端开发人员,必不可少的东西肯定是 JDK Mysql Tomcat容器 每天记录一天,每天进步一点点~~ 1.更新系统 ...