HDU3567 Eight II —— IDA*算法
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3567
Eight II
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 130000/65536 K (Java/Others)
Total Submission(s): 3420 Accepted Submission(s): 742
In this game, you are given a 3 by 3 board and 8 tiles. The tiles are numbered from 1 to 8 and each covers a grid. As you see, there is a blank grid which can be represented as an 'X'. Tiles in grids having a common edge with the blank grid can be moved into
that blank grid. This operation leads to an exchange of 'X' with one tile.
We use the symbol 'r' to represent exchanging 'X' with the tile on its right side, and 'l' for the left side, 'u' for the one above it, 'd' for the one below it.

A state of the board can be represented by a string S using the rule showed below.

The problem is to operate an operation list of 'r', 'u', 'l', 'd' to turn the state of the board from state A to state B. You are required to find the result which meets the following constrains:
1. It is of minimum length among all possible solutions.
2. It is the lexicographically smallest one of all solutions of minimum length.
The input of each test case consists of two lines with state A occupying the first line and state B on the second line.
It is guaranteed that there is an available solution from state A to B.
The first line is in the format of "Case x: d", in which x is the case number counted from one, d is the minimum length of operation list you need to turn A to B.
S is the operation list meeting the constraints and it should be showed on the second line.
12X453786
12345678X
564178X23
7568X4123
dd
Case 2: 8
urrulldr
题解:
POJ1077 的强化版。
问:为什么加了vis判重比不加vis判重还要慢?
答:因为当引入vis判重时,就需要知道棋盘的状态,而计算一次棋盘的状态,就需要增加(8+7+……1)次操作,结果得不偿失。
更新:其实IDA*算法不能加vis判重,因为IDA*的本质就是dfs, 根据dfs的特性, 第一次被访问所用的步数并不一定是最少步数,所以如果加了vis判重,就默认取了第一次被访问时所用的步数,而这个步数不一定是最优的。所以第二份代码是错误的,即使过了oj的数据。
未加vis判重(202MS):
| 2017-09-10 10:25:57 | Accepted | 3567 | 202MS | 1712K |
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e6+; //M为棋盘, pos_goal为目标状态的每个数字所在的位置, pos_goal[dig] = pos,
//即表明:在目标状态中,dig所在的位置为pos。pos_goal与M为两个互逆的数组。
int M[MAXN], pos_goal[MAXN]; int fac[] = { , , , , , , , , };
int dir[][] = { ,, ,-, ,, -, };
char op[] = {'d', 'l', 'r', 'u' }; int cantor(int s[]) //获得哈希函数值
{
int sum = ;
for(int i = ; i<; i++)
{
int num = ;
for(int j = i+; j<; j++)
if(s[j]<s[i]) num++;
sum += num*fac[-i];
}
return sum+;
} int dis_h(int s[]) //获得曼哈顿距离
{
int dis = ;
for(int i = ; i<; i++)
if(s[i]!=)
{
int x = i/, y = i%;
int xx = pos_goal[s[i]]/, yy = pos_goal[s[i]]%; //此处须注意
dis += abs(x-xx) + abs(y-yy);
}
return dis;
} char path[];
int kase, nextd;
bool IDAstar(int loc, int depth, int pre, int limit)
{
int h = dis_h(M);
if(depth+h>limit)
{
nextd = min(nextd, depth+h);
return false;
} if(h==)
{
path[depth] = '\0';
printf("Case %d: %d\n", kase, depth);
puts(path);
return true;
} int x = loc/;
int y = loc%;
for(int i = ; i<; i++)
{
if(i+pre==) continue; //方向与上一步相反, 剪枝
int xx = x + dir[i][];
int yy = y + dir[i][];
if(xx>= && xx<= && yy>= && yy<=)
{
int tmploc = xx*+yy;
swap(M[loc], M[tmploc]);
path[depth] = op[i];
if(IDAstar(xx*+yy, depth+, i, limit))
return true;
swap(M[loc], M[xx*+yy]);
}
}
return false;
} int main()
{
int T;
char str[];
scanf("%d",&T);
for(kase = ; kase<=T; kase++)
{
int loc;
scanf("%s", str);
for(int i = ; i<; i++)
{
if(str[i]=='X') M[i] = , loc = i;
else M[i] = str[i]-'';
} scanf("%s", str);
for(int i = ; i<; i++)
{
if(str[i]=='X') pos_goal[] = i;
else pos_goal[str[i]-''] = i;
} for(int limit = dis_h(M); ; limit = nextd) //迭代加深搜
{
nextd = INF;
if(IDAstar(loc, , INF, limit))
break;
}
}
}
加了vis判重(936MS)
| 2017-09-10 10:26:10 | Accepted | 3567 | 936MS | 5620K |
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e6+; int M[MAXN], pos_goal[MAXN]; int fac[] = { , , , , , , , , };
int dir[][] = { ,, ,-, ,, -, };
char op[] = {'d', 'l', 'r', 'u' }; int cantor(int s[]) //获得哈希函数值
{
int sum = ;
for(int i = ; i<; i++)
{
int num = ;
for(int j = i+; j<; j++)
if(s[j]<s[i]) num++;
sum += num*fac[-i];
}
return sum+;
} int dis_h(int s[]) //获得曼哈顿距离
{
int dis = ;
for(int i = ; i<; i++)
if(s[i]!=)
{
int x = i/, y = i%;
int xx = pos_goal[s[i]]/, yy = pos_goal[s[i]]%;
dis += abs(x-xx) + abs(y-yy);
}
return dis;
} char path[];
int kase, nextd, vis[MAXN];
bool IDAstar(int loc, int depth, int pre, int limit)
{
int h = dis_h(M);
if(depth+h>limit)
{
nextd = min(nextd, depth+h);
return false;
} if(h==)
{
path[depth] = '\0';
printf("Case %d: %d\n", kase, depth);
puts(path);
return true;
} int x = loc/;
int y = loc%;
for(int i = ; i<; i++)
{
if(i+pre==) continue; //方向与上一步相反, 剪枝
int xx = x + dir[i][];
int yy = y + dir[i][];
if(xx>= && xx<= && yy>= && yy<=)
{
int tmploc = xx*+yy;
swap(M[loc], M[tmploc]);
int status = cantor(M);
if(!vis[status])
{
vis[status] = ;
path[depth] = op[i];
if(IDAstar(xx*+yy, depth+, i, limit))
return true;
vis[status] = ;
}
swap(M[loc], M[xx*+yy]);
}
}
return false;
} int main()
{
int T;
char str[];
scanf("%d",&T);
for(kase = ; kase<=T; kase++)
{
int loc;
scanf("%s", str);
for(int i = ; i<; i++)
{
if(str[i]=='X') M[i] = , loc = i;
else M[i] = str[i]-'';
} scanf("%s", str);
for(int i = ; i<; i++)
{
if(str[i]=='X') pos_goal[] = i;
else pos_goal[str[i]-''] = i;
} vis[cantor(M)] = ;
for(int limit = dis_h(M); ; limit = nextd) //迭代加深搜
{
nextd = INF;
ms(vis,);
if(IDAstar(loc, , INF, limit))
break;
}
}
}
HDU3567 Eight II —— IDA*算法的更多相关文章
- 【学时总结】 ◆学时·II◆ IDA*算法
[学时·II] IDA*算法 ■基本策略■ 如果状态数量太多了,优先队列也难以承受:不妨再回头看DFS-- A*算法是BFS的升级,那么IDA*算法是对A*算法的再优化,同时也是对迭代加深搜索(IDF ...
- HUD 1043 Eight 八数码问题 A*算法 1667 The Rotation Game IDA*算法
先是这周是搜索的题,网站:http://acm.hdu.edu.cn/webcontest/contest_show.php?cid=6041 主要内容是BFS,A*,IDA*,还有一道K短路的,.. ...
- LEETCODE —— Best Time to Buy and Sell Stock II [贪心算法]
Best Time to Buy and Sell Stock II Say you have an array for which the ith element is the price of a ...
- HDU4513 吉哥系列故事——完美队形II Manacher算法
题目链接:https://vjudge.net/problem/HDU-4513 吉哥系列故事——完美队形II Time Limit: 3000/1000 MS (Java/Others) Me ...
- 八数码(IDA*算法)
八数码 IDA*就是迭代加深和A*估价的结合 在迭代加深的过程中,用估计函数剪枝优化 并以比较优秀的顺序进行扩展,保证最早搜到最优解 需要空间比较小,有时跑得比A*还要快 #include<io ...
- HDU1560 DNA sequence —— IDA*算法
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1560 DNA sequence Time Limit: 15000/5000 MS (Java/Oth ...
- IDA*算法——骑士精神
例题 骑士精神 Description 在一个5×5的棋盘上有12个白色的骑士和12个黑色的骑士, 且有一个空位.在任何时候一个骑士都能按照骑士的走法(它可以走到和它横坐标相差为1,纵坐标相差为2或者 ...
- UVA - 11212 Editing a Book(IDA*算法+状态空间搜索)
题意:通过剪切粘贴操作,将n个自然段组成的文章,排列成1,2,……,n.剪贴板只有一个,问需要完成多少次剪切粘贴操作可以使文章自然段有序排列. 分析: 1.IDA*搜索:maxn是dfs的层数上限,若 ...
- 还不会ida*算法?看完这篇或许能理解点。
IDA* 算法分析 IDA* 本质上就是带有估价函数和迭代加深优化的dfs与,A * 相似A *的本质便是带 有估价函数的bfs,估价函数是什么呢?估价函数顾名思义,就是估计由目前状态达 到目标状态的 ...
随机推荐
- BS4(BeautifulSoup4)的使用--find_all()篇
可以直接参考 BS4文档:https://www.crummy.com/software/BeautifulSoup/bs4/doc/index.zh.html#find-all 注意的是: 1.有些 ...
- intellij idea 使用用到的问题
1.github error setting certificate verify locations使用github时报错,解决方法: git config --system http.sslcai ...
- 在GridView中的每一页末尾添加空行
原文发布时间为:2008-08-03 -- 来源于本人的百度文章 [由搬家工具导入] protected void GridView1_RowCreated(object sender, GridVi ...
- 【网摘】sql 语句修改字段名称以及字段类型
网上摘抄,备份使用: 修改字段名: 下例将表 customers 中的列 contact title 重命名为 title. EXEC sp_rename 'customers.[contact ti ...
- javascript实现数据结构----栈
//栈是一种遵从后进先出原则的有序集合. //新添加的或待删除的元素都保存在栈的末尾,称作栈顶,另一端就叫栈底 //在栈里,新元素都靠近栈顶,旧元素都叫做栈底 function Stack(){ va ...
- js Math [ 随机数、绝对值、四舍五入、进一取整、舍去取整、最大值、最小值、圆周率 ]
<script> /* 数学对象:Math */ with (document) { write('<br>-3.5的绝对值:'+Math.abs(-3.5)); write( ...
- [bzoj3622]已经没有什么好害怕的了_动态规划_容斥原理
bzoj-3622 已经没有什么好害怕的了 题目大意: 数据范围:$1\le n \le 2000$ , $0\le k\le n$. 想法: 首先,不难求出药片比糖果小的组数. 紧接着,我开始的想法 ...
- css可见性
overflow:hidden: 溢出隐藏 visibility:hidden: 隐藏元素,隐藏之后还占据原来的位置 display:none: 隐藏元 ...
- JVM内存分为哪几部分?各个部分的作用是什么?
JVM内存分为哪几部分?各个部分的作用是什么? 1. Java虚拟机内存的五大区域 Java的运行离不开Java虚拟机的支持,今天我就跟大家探讨一下Java虚拟机的一些基础知识. JVM内存区域分 ...
- Go -- 性能优化
今日头条使用 Go 语言构建了大规模的微服务架构,本文结合 Go 语言特性着重讲解了并发,超时控制,性能等在构建微服务中的实践. 今日头条当前后端服务超过80%的流量是跑在 Go 构建的服务上.微服务 ...