dfs树上的边
by GeneralLiu
一 开 始 学
tarjan 的 强连通分量 , 割边 , 割点 时
没有 学扎实
经过培训 ,发现了些 需要注意的 小细节
举个荔枝
dfs树 上的 边
学了 tarjan 的 应该有所体会
tarjian 算法 是基于 原图 的 dfs树 上的
下面就介绍一下我从此 博客
上学到的
dfs树 上的
树边 前向边 后向边 横叉边
到底是啥
树边,前向边,后向边,横叉边,应该说,不是一个图本身有的概念,应该是图进行DFS时才有的概念。
图进行DFS会得到一棵DFS树(森林),在这个树上才有了这些概念。
对图进行DFS,可以从任意的顶点开始,遍历的方式也是多样的,所以不同的遍历会得到不同的DFS树,进而产生不同的树边,前向边,后向边,横叉边。所以这4种边,是一个相对的概念。
在图的遍历中,往往设置了一个标记数组vis的bool值来记录顶点是否被访问过。
但有些时候需要改变vis值的意义。
令vis具有3种值并表示3种不同含义
vis = 0,表示该顶点没没有被访问
vis = 1,表示该顶点已经被访问,但其子孙后代还没被访问完,也就没从该点返回
vis = 2,,表示该顶点已经被访问,其子孙后代也已经访问完,也已经从该顶点返回
可以vis的3种值表示的是一种顺序关系和时间关系
《算法导论》334页有这4种边的准确定义,在此不累述
DFS过程中,对于一条边u->v
vis[v] = 0,说明v还没被访问,v是首次被发现,u->v是一条树边
vis[v] = 1,说明v已经被访问,但其子孙后代还没有被访问完(正在访问中),而u又指向v?说明u就是v的子孙后代,u->v是一条后向边,因此后向边又称返祖边
vis[v] = 3,z说明v已经被访问,其子孙后代也已经全部访问完,u->v这条边可能是一条横叉边,或者前向边
注意:树边,后向边,前向边,都有祖先,后裔的关系,但横叉边没有,u->v为横叉边,
说明在这棵DFS树中,它们不是祖先后裔的关系它们可能是兄弟关系,堂兄弟关系,甚至更远的关系,
如果是dfs森林的话,u和v甚至可以在不同的树上
在很多算法中,后向边都是有作用的,但是前向边和横叉边的作用往往被淡化,其实它们没有太大作用。
dfs树上的边的更多相关文章
- Luogu P2664 树上游戏 dfs+树上统计
题目: P2664 树上游戏 分析: 本来是练习点分治的时候看到了这道题.无意中发现题解中有一种方法可以O(N)解决这道题,就去膜拜了一下. 这个方法是,假如对于某一种颜色,将所有这种颜色的点全部删去 ...
- 2018中国大学生程序设计竞赛 - 网络选拔赛 1009 - Tree and Permutation 【dfs+树上两点距离和】
Tree and Permutation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Oth ...
- hdu 4123 Bob’s Race (dfs树上最远距离+RMQ)
C - Bob’s Race Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Subm ...
- 《算法设计手册》面试题解答 第五章:图的遍历 附:DFS应用之找挂接点
第五章面试题解答 5-31. DFS和BFS使用了哪些数据结构? 解析: 其实刚读完这一章,我一开始想到的是用邻接表来表示图,但其实用邻接矩阵也能实现啊?后来才发现应该回答,BFS用队列实现:DFS可 ...
- BZOJ1064 NOI2008假面舞会(dfs树)
将图中的环的长度定义为正向边数量-反向边数量,那么答案一定是所有环的环长的共同因子.dfs一下就能找到图中的一些环,并且图中的所有环的环长都可以由这些环长加加减减得到(好像不太会证).如果有环长为1或 ...
- BZOJ4878 挑战NP-Hard(dfs树)
既然是二选一,考虑两个问题有什么联系.题面没有说无解怎么办,所以如果不存在经过k条边的简单路径,一定存在k染色方案.考虑怎么证明这个东西,我们造一棵dfs树.于是可以发现如果树深>k(根节点深度 ...
- NOIP2016天天爱跑步 题解报告【lca+树上统计(桶)】
题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.«天天爱跑步»是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵包含 nn个 ...
- bzoj4316小C的独立集(dfs树/仙人掌+DP)
本题有两种写法,dfs树上DP和仙人掌DP. 先考虑dfs树DP. 什么是dfs树?其实是对于一棵仙人掌,dfs后形成生成树,找出非树边(即返祖边),然后dfs后每条返祖边+其所覆盖的链构成了一个环( ...
- dfs树
dfs树是解决图中带环的利器. 前天CF的F题就是dfs树,但是当时我没有认真思考 觉着找到一个环过于困难 当时没有想到 也没理解dfs树的意义. 对于一张无向图求出一个dfs树 这个树有两种边 树边 ...
随机推荐
- [转]C#综合揭秘——细说多线程(上)
引言 本文主要从线程的基础用法,CLR线程池当中工作者线程与I/O线程的开发,并行操作PLINQ等多个方面介绍多线程的开发. 其中委托的BeginInvoke方法以及回调函数最为常用. 而 I/O线程 ...
- 自定义Toast的显示位置和显示内容
<?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android=&quo ...
- app支付宝授权登录获取用户信息
由后台进行地址的拼接(前台进行授权) // 生成授权的参数 String sign = ""; Long userId1 = SecurityUser.getUserId(); S ...
- pagehelper 分页
分页jar包: <dependency> <groupId>com.github.pagehelper</groupId> <artifactId>pa ...
- finger - 用户信息查找程序
总览 finger [-lmsp ] [user ... ] [user@host ... ] 描述 The finger 显示关于系统用户的信息 参数: -s Finger 显示用户的登录名, 真名 ...
- PHP安全之 register_globals
一.register_globals = Off 和 register_globals = On的区别 register_globals是php.ini里的一个配置,这个配置影响到php如何接收传递过 ...
- QT +坐标系统 + 自定义控件 + 对象树的验证(自动进行析构)_内存回收机制
通过创建一个新的按钮类,来进行析构函数的验证,即对象树概念的验证.当程序结束的时候会自动的调用析构函数, 验证思路: 要验证按钮会不会自动的析构,(即在QPushButton类里面的析构函数添加qDe ...
- ubuntu install zabbix
ubuntu install zabbix reference1 reference2 some ERRORS raise during install process, may it help. z ...
- JavaScript 非常重要的几个概念
JavaScript是一门比较复杂的语言.如果你是一名JavaScript开发人员,不管处于什么样的水平,都有必要了解JavaScript的基本概念.小编最近的工作涉及到JavaScript,于是本文 ...
- 工作流activi链接地址
http://topmanopensource.iteye.com/blog/1313865