传送门

水题

——代码

 #include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define N 51
#define M 100001
#define INF 1e9
#define min(x, y) ((x) < (y) ? (x) : (y)) int n, k, s, t, cnt, tot, sum;
int head[M], to[M], val[M], cost[M], next[M], dis[M], pre[M], a[N][N], b[N][N];
bool vis[M]; inline int read()
{
int x = , f = ;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = (x << ) + (x << ) + ch - '';
return x * f;
} inline void add2(int x, int y, int z, int c)
{
to[cnt] = y;
val[cnt] = z;
cost[cnt] = c;
next[cnt] = head[x];
head[x] = cnt++;
} inline void add(int x, int y, int z, int c)
{
add2(x, y, z, c);
add2(y, x, , -c);
} inline bool spfa()
{
int i, u, v;
std::queue <int> q;
memset(vis, , sizeof(vis));
memset(pre, -, sizeof(pre));
memset(dis, / , sizeof(dis));
q.push(s);
dis[s] = ;
while(!q.empty())
{
u = q.front(), q.pop();
vis[u] = ;
for(i = head[u]; i ^ -; i = next[i])
{
v = to[i];
if(val[i] && dis[v] > dis[u] + cost[i])
{
dis[v] = dis[u] + cost[i];
pre[v] = i;
if(!vis[v])
{
q.push(v);
vis[v] = ;
}
}
}
}
return pre[t] ^ -;
} int main()
{
int i, j, x, d;
n = read();
k = read();
s = , t = (n * n << ) + ;
memset(head, -, sizeof(head));
for(i = ; i <= n; i++)
for(j = ; j <= n; j++)
{
x = read(), b[i][j] = ++tot;
add(b[i][j], b[i][j] + n * n, , -x);
add(b[i][j], b[i][j] + n * n, INF, );
}
for(i = ; i <= n; i++)
for(j = ; j <= n; j++)
{
if(i < n) add(b[i][j] + n * n, b[i + ][j], INF, );
if(j < n) add(b[i][j] + n * n, b[i][j + ], INF, );
}
add(s, , k, );
add(n * n << , t, k, );
while(spfa())
{
d = INF;
for(i = pre[t]; i ^ -; i = pre[to[i ^ ]]) d = min(d, val[i]);
for(i = pre[t]; i ^ -; i = pre[to[i ^ ]])
{
val[i] -= d;
val[i ^ ] += d;
}
sum += dis[t] * d;
}
printf("%d\n", -sum);
return ;
}

[luoguP2045] 方格取数加强版(最小费用最大流)的更多相关文章

  1. P2045 方格取数加强版 最大费用最大流

    $ \color{#0066ff}{ 题目描述 }$ 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每 ...

  2. 洛谷 P2045 方格取数加强版【费用流】

        题目链接:https://www.luogu.org/problemnew/show/P2045 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现 ...

  3. [CodeVs1227]方格取数2(最大费用最大流)

    网络流24题的坑还没填完,真的要TJ? 题目大意:一个n*n的矩阵,每格有点权,从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来,该格子的数就变成0,这样一共走 ...

  4. P2045 方格取数加强版

    P2045 方格取数加强版 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格 ...

  5. [luogu_P2045]方格取数加强版

    [luogu_P2045]方格取数加强版 试题描述 给出一个 \(n \times n\) 的矩阵,每一格有一个非负整数 \(A_{i,j},(A_{i,j} \le 1000)\) 现在从 \((1 ...

  6. 【Luogu】P2045方格取数加强版(最小费用最大流)

    题目链接 通过这题我学会了引诱算法的行为,就是你通过适当的状态设计,引诱算法按照你想要它做的去行动,进而达到解题的目的. 最小费用最大流,首先将点拆点,入点和出点连一条费用=-权值,容量=1的边,再连 ...

  7. Luogu2045 方格取数加强版

    题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来,该格子的数就变 ...

  8. HDU 1569 方格取数(2) (最小割)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  9. [BZOJ1475]方格取数 网络流 最小割

    1475: 方格取数 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1025  Solved: 512[Submit][Status][Discuss] ...

随机推荐

  1. git 删除本地仓库

    更新: 2017/06/27 修改格式,备注mac下的命令没测试过   windows: rm .git/ mac: sudo rm -rf .git/ 没验证

  2. P3953 逛公园(dp,最短路)

    P3953 逛公园 题目描述 策策同学特别喜欢逛公园.公园可以看成一张NN个点MM条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,NN号点是公园的出口,每条边有一个非负权值, 代表策策经 ...

  3. bzoj1202: [HNOI2005]狡猾的商人(并查集 差分约束)

    1202: [HNOI2005]狡猾的商人 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4127  Solved: 1981[Submit][Sta ...

  4. 转】 Spark SQL UDF使用

    原博文出自于: http://blog.csdn.net/oopsoom/article/details/39401391 感谢! Spark1.1推出了Uer Define Function功能,用 ...

  5. P2668 斗地主 dp+深搜版

    题目描述 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共54张牌来进行的扑克牌游戏.在斗地主中,牌的大小关系根据牌的数码表示如下:3<4< ...

  6. springboot项目中,@transactional 无效

    问题: springboot项目,依然是使用jpa.Hibernate来操作mysql,涉及到数据库的操作,就少不了事务.写了一个接口,用来测试@Transaction注解的作用,发现没有效果 分析: ...

  7. python自动化--语言基础五面向对象、迭代器、range和切片的区分

    面向对象 一.面向对象简单介绍: class Test(): #类的定义 car = "buick" #类变量,定义在类里方法外,可被对象直接调用,具有全局效果 def __ini ...

  8. mongo 3.4分片集群系列之八:分片管理

    这个系列大致想跟大家分享以下篇章: 1.mongo 3.4分片集群系列之一:浅谈分片集群 2.mongo 3.4分片集群系列之二:搭建分片集群--哈希分片 3.mongo 3.4分片集群系列之三:搭建 ...

  9. clipboard.min.js 复制表格内容

    <script type="text/javascript" src="js/clipboard.min.js"></script> & ...

  10. (转)Hibernate框架基础——映射普通属性

    http://blog.csdn.net/yerenyuan_pku/article/details/52739871 持久化对象与OID 对持久化对象的要求 提供一个无参的构造器.使Hibernat ...