题目:

一个斜率优化+CDQ好题

BZOJ2149

分析:

先吐槽一下题意:保留房子反而要给赔偿金是什么鬼哦……

第一问是一个经典问题。直接求原序列的最长上升子序列是错误的。比如\(\{1,2,2,3\}\),选择\(\{1,2,3\}\)不改变后会发现无论如何修改都无法变成一个严格上升序列。只能选择\(\{1,2\}\),把原序列改成\(\{1,2,3,4\}\)。

考虑对于两个数\(a_i\)和\(a_j(j<i)\),\(a_i\)能接在\(a_j\)后面的充要条件是\(a_i-a_j\geq i-j\)(这样中间才能塞下\(i-j-1\)个数形成上升序列)。移项得到\(a_i-i\geq a_j-j\),所以应该把每个数减去它的编号作为权值然后求最长非降子序列。由于要求美观度为正整数,所以若\(a_i-i<0\),则\(i\)不能作为序列的开端。下面的代码展示了\(O(nlog_2n)\)求法(其中\(c[i]=a[i]-i\),\(f[i]\)表示以\(i\)结尾的最长非降子序列的长度)。

int solve()
{
int ans = 0;
memset(tmp, INF, sizeof(int[n + 1]));
for (int i = 1; i <= n; i++)
{
if (c[i] < 0)
f[i] = 0;
else
{
int pos = upper_bound(tmp + 1, tmp + ans + 1, c[i]) - tmp;
tmp[pos] = c[i];
ans = max(ans, pos);
f[i] = pos;
}
v[f[i]].push_back(i);
}
return ans;
}

然后来看第二问。设\(dp[i]\)为将前\(i\)个数变成单调上升序列的最小总花费。则\(dp[i]\)可以由\(dp[j]\)转移而来的必要条件是\(i>j\),\(a[i]-i>a[j]-j\)且\(f[i]=f[j]+1\)(若\(f[i]>f[j]+1\),则不满足“保留最多的旧房子”;若\(f[i]<f[j]+1\),说明你\(f[i]\)算错了)。

转移时,最优解显然是把\(a[k](j<k<i)\)变成一个以\(a[j]+1\)为首项,公差为\(1\)的等差数列。由于\(a[i]-i>a[j]-j\),所以改完以后一定有\(a[i-1]<a[i]\)

\[dp[i]=min\{dp[j]+\frac{[a[j]+1+a[j]+(i-j-1)]\times(i-j-1)}{2}+a[i]+b[i]\}
\]

整理一下,得到:

\[dp[i]=min\{dp[j]+a[j]\times(i-j-1)+\frac{i(i-1)}{2}+\frac{j(j+1)}{2}+-ij+a[i]+b[i]\}
\]

可以根据\(f[i]\)分层,一起处理所有\(f[j]=k-1\)的\(j\)对\(f[i]=k\)的\(i\)的贡献。下面考虑每一层的情况。

未完待续……

代码:

方便起见,在序列首加一个\(0\)(\(a[0]=f[0]=0\))。这样可以保证改造后美观度为正(因为\(f[i]=1\)的\(dp[i]\)必然从\(dp[0]\)转移而来);在序列尾加一个无穷大作为\(a[n+1]\),\(dp[n+1]-a[n+1]\)即为答案。

#include <cstdio>
#include <algorithm>
#include <cctype>
#include <cstring>
#include <vector>
using namespace std; namespace zyt
{
template<typename T>
inline void read(T &x)
{
char c;
bool f = false;
x = 0;
do
c = getchar();
while (c != '-' && !isdigit(c));
if (c == '-')
f = true, c = getchar();
do
x = x * 10 + c - '0', c = getchar();
while (isdigit(c));
if (f)
x = -x;
}
template<typename T>
inline void write(T x)
{
static char buf[20];
char *pos = buf;
if (x < 0)
putchar('-'), x = -x;
do
*pos++ = x % 10 + '0';
while (x /= 10);
while (pos > buf)
putchar(*--pos);
}
typedef long long ll;
typedef long double ld;
const int N = 1e5 + 10, INF = 0x3f3f3f3f;
const ll LINF = 0x3f3f3f3f3f3f3f3fLL;
int n, a[N], b[N], c[N], f[N], tmp[N];
ll dp[N];
vector<int> v[N];
int solve()
{
int ans = 0;
memset(tmp, INF, sizeof(int[n + 1]));
for (int i = 1; i <= n; i++)
{
if (c[i] < 0)
f[i] = 0;
else
{
int pos = upper_bound(tmp + 1, tmp + ans + 1, c[i]) - tmp;
tmp[pos] = c[i];
ans = max(ans, pos);
f[i] = pos;
}
v[f[i]].push_back(i);
}
v[0].push_back(0);
return ans;
}
inline ll x(const int i)
{
return i - a[i];
}
inline ll y(const int i)
{
return dp[i] - (ll)(i + 1) * a[i] + (ll)i * (i + 1) / 2;
}
inline ld ratio(const int i, const int j)
{
if (x(i) == x(j))
return y(i) < y(j) ? -LINF : LINF;
else
return (ld)(y(i) - y(j)) / (x(i) - x(j));
}
struct node
{
int pos;
bool type;
bool operator < (const node &b) const
{
return pos < b.pos;
}
}arr[N];
const int CHANGE = 0, QUERY = 1;
void CDQ(const int l, const int r)
{
if (l == r)
return;
int mid = (l + r) >> 1, i = l, j = mid + 1, k = l;
static node tmp[N];
static int st[N];
CDQ(l, mid), CDQ(mid + 1, r);
int top = 0;
while (i <= mid && j <= r)
{
if (x(arr[i].pos) >= x(arr[j].pos))
{
if (arr[i].type == CHANGE)
{
while (top > 1 && ratio(st[top - 2], st[top - 1]) < ratio(st[top - 1], arr[i].pos))
--top;
st[top++] = arr[i].pos;
}
tmp[k++] = arr[i++];
}
else
{
if (arr[j].type == QUERY && top)
{
int l = 0, r = top - 2, ans = top - 1;
while (l <= r)
{
int mid = (l + r) >> 1;
if (ratio(st[mid], st[mid + 1]) < arr[j].pos)
r = mid - 1, ans = mid;
else
l = mid + 1;
}
dp[arr[j].pos] = min(dp[arr[j].pos],
dp[st[ans]] +
(ll)((a[st[ans]] << 1) + arr[j].pos - st[ans]) * (arr[j].pos - st[ans] - 1) / 2
+ a[arr[j].pos] + b[arr[j].pos]);
}
tmp[k++] = arr[j++];
}
}
while (i <= mid)
tmp[k++] = arr[i++];
while (j <= r)
{
if (arr[j].type == QUERY && top)
{
int l = 0, r = top - 2, ans = top - 1;
while (l <= r)
{
int mid = (l + r) >> 1;
if (ratio(st[mid], st[mid + 1]) < arr[j].pos)
r = mid - 1, ans = mid;
else
l = mid + 1;
}
dp[arr[j].pos] = min(dp[arr[j].pos],
dp[st[ans]] +
(ll)((a[st[ans]] << 1) + arr[j].pos - st[ans]) * (arr[j].pos - st[ans] - 1) / 2
+ a[arr[j].pos] + b[arr[j].pos]);
}
tmp[k++] = arr[j++];
}
memcpy(arr + l, tmp + l, sizeof(node[r - l + 1]));
}
int work()
{
read(n);
for (int i = 1; i <= n; i++)
read(a[i]), c[i] = a[i] - i;
for (int i = 1; i <= n; i++)
read(b[i]);
a[++n] = INF;
c[n] = INF;
int ans = solve();
write(ans - 1), putchar(' ');
memset(dp, INF, sizeof(ll[n + 1]));
dp[0] = 0;
for (int i = 1; i <= ans; i++)
{
int cnt = 0;
for (int j = 0; j < v[i - 1].size(); j++)
if (dp[v[i - 1][j]] < LINF)
arr[++cnt] = (node){v[i - 1][j], CHANGE};
for (int j = 0; j < v[i].size(); j++)
arr[++cnt] = (node){v[i][j], QUERY};
sort(arr + 1, arr + cnt + 1);
CDQ(1, cnt);
}
write(dp[n] - a[n] - b[n]);
return 0;
}
}
int main()
{
return zyt::work();
}

【BZOJ2149】拆迁队(斜率优化DP+CDQ分治)的更多相关文章

  1. bzoj2149拆迁队 斜率优化dp+分治

    2149: 拆迁队 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 397  Solved: 177[Submit][Status][Discuss] ...

  2. 【bzoj3672】[Noi2014]购票 斜率优化dp+CDQ分治+树的点分治

    题目描述  给出一棵以1为根的带边权有根树,对于每个根节点以外的点$v$,如果它与其某个祖先$a$的距离$d$不超过$l_v$,则可以花费$p_vd+q_v$的代价从$v$到$a$.问从每个点到1花费 ...

  3. P4027 [NOI2007]货币兑换(斜率优化dp+cdq分治)

    P4027 [NOI2007]货币兑换 显然,如果某一天要买券,一定是把钱全部花掉.否则不是最优(攒着干啥) 我们设$f[j]$为第$j$天时用户手上最多有多少钱 设$w$为花完钱买到的$B$券数 $ ...

  4. HDU 3824/ BZOJ 3963 [WF2011]MachineWorks (斜率优化DP+CDQ分治维护凸包)

    题面 BZOJ传送门(中文题面但是权限题) HDU传送门(英文题面) 分析 定义f[i]f[i]f[i]表示在iii时间(离散化之后)卖出手上的机器的最大收益.转移方程式比较好写f[i]=max{f[ ...

  5. BZOJ 1492 [NOI2007]货币兑换Cash:斜率优化dp + cdq分治

    传送门 题意 初始时你有 $ s $ 元,接下来有 $ n $ 天. 在第 $ i $ 天,A券的价值为 $ A[i] $ ,B券的价值为 $ B[i] $ . 在第 $ i $ 天,你可以进行两种操 ...

  6. APIO2010 特别行动队 & 斜率优化DP算法笔记

    做完此题之后 自己应该算是真正理解了斜率优化DP 根据状态转移方程$f[i]=max(f[j]+ax^2+bx+c),x=sum[i]-sum[j]$ 可以变形为 $f[i]=max((a*sum[j ...

  7. [NOI2007]货币兑换 --- DP + 斜率优化(CDQ分治)

    [NOI2007]货币兑换 题目描述: 小 Y 最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A 纪念券(以下简称 A 券)和 B 纪念券(以下简称 B 券). 每个持有金券的顾客都有一个 ...

  8. NOI 2007 货币兑换Cash (bzoj 1492) - 斜率优化 - 动态规划 - CDQ分治

    Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个 ...

  9. bzoj 1492: [NOI2007]货币兑换Cash【贪心+斜率优化dp+cdq】

    参考:http://www.cnblogs.com/lidaxin/p/5240220.html 虽然splay会方便很多,但是懒得写,于是写了cdq 首先要想到贪心的思路,因为如果在某天买入是能得到 ...

随机推荐

  1. eclipse自动提示配置

    打开Window->Preferences

  2. vue中axios设置

    //设置默认全局baseURL axios.defaults.baseURL=process.env.BASE_API; //设置默认全局携带浏览器cookie axios.defaults.with ...

  3. 部署live555到云

    1.下载live555源码:    wget http://www.live555.com/liveMedia/public/live.2017.10.28.tar.gz    2.解压源码包:   ...

  4. 2.6 访问 Shell 脚本的参数

        所谓的位置参数(positional parameters)指的也就是Shell脚本的命令行参数(command-line arguments).在Shell函数里,它们同时也可以是函数的参数 ...

  5. 线程 synchronized锁机制

    脏读 一个常见的概念.在多线程中,难免会出现在多个线程中对同一个对象的实例变量进行并发访问的情况,如果不做正确的同步处理,那么产生的后果就是"脏读",也就是取到的数据其实是被更改过 ...

  6. Leetcode 122.买卖股票的最佳时机II

    给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票). 注意:你不能同时参与多笔交易(你必须在再次 ...

  7. 【MongoDB】2、安装MongoDB 2.6.1 on Unbuntu 14.04(学习流水账)

    http://blog.csdn.net/stationxp/article/details/26077439 计划: 装一个虚机,ubuntu吧,14.04 Trusty Tahr. 安装Mongo ...

  8. 总结懒加载的解决方法(全)org.hibernate.LazyInitializationException: could not initialize proxy - no Session

    如下错误:org.hibernate.LazyInitializationException: could not initialize proxy - no Session 原因是懒加载的问题,因为 ...

  9. 前段集成解决方案grunt+yeoman初步认识

    1.什么是前段集成解决方案? 将前端研发领域中各种分散的技术元素集中在一起,并对常见的前端开发问题.不足.缺陷和需求,所提出的一种解决问题的方案 2.yeoman 应用的架构,模型!  相当于一个生成 ...

  10. CString、char*与string的区别

    三者的区别 CString 是MFC或者ATL中的实现: string 是C++标准库中的实现: char* 为C编程中最常用的字符串指针,一般以’\0’为结束标志. string和CString均是 ...