#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include<math.h>
#include<algorithm>
#define MAXN 100000
using namespace std;
typedef unsigned long long LL;
LL fac[MAXN],cnt,G,L,m,p;
LL min(LL a,LL b)
{
return a<b?a:b;
}
LL gcd(LL a,LL b)
{
return b==0?a:gcd(b,a%b);
}
LL mult_mod(LL a,LL b,LL mod)
{
LL ans=0;
while(b)
{
if(b&1)
ans=(ans+a)%mod;
a=(a<<1)%mod;
b>>=1;
}
return ans;
}
LL pow_mod(LL a,LL b,LL mod)
{
LL d=1;
a%=mod;
while(b)
{
if(b&1)
d=mult_mod(d,a,mod);
a=mult_mod(a,a,mod);
b>>=1;
}
return d%mod;
}
bool witness(LL a,LL n)
{
LL u=n-1,t=0;
while((u&1)==0)
{
u>>=1;
t++;
}
LL x,x0=pow_mod(a,u,n);
for(LL i=1; i<=t; i++)
{
x=mult_mod(x0,x0,n);
if(x==1&&x0!=1&&x0!=(n-1))
return true;
x0=x;
}
if(x!=1)
return true;
return false;
}
bool miller_rabin(LL n)
{
if(n==2) return true;
if(n<2||!(n&1)) return false;
for(int j=1; j<=8; j++)
{
LL a=rand()%(n-1)+1;
if(witness(a,n))
return false;
}
return true;
}
LL pollard_rho(LL n,LL c)
{
LL i=1,k=2,d,x=2,y=2;
while(true)
{
i++;
x=(mult_mod(x,x,n)+c)%n;
d=gcd(y-x,n);
if(d!=1&&d!=n)
return d;
if(x==y) return n;
if(i==k)
{
y=x;
k<<=1;
}
}
}
void find_fac(LL n,LL c)
{
if(miller_rabin(n)||n<=1)
{
fac[cnt++]=n;
return;
}
LL p=pollard_rho(n,c);
while(p>=n) p=pollard_rho(p,c--);
find_fac(p,c);
find_fac(n/p,c);
}
void dfs( LL step,LL num)
{
if(step==cnt||num>p)
{
if(num<=p&&num>m)
m=num;
return;
}
dfs(step+1,num*fac[step]);
dfs(step+1,num);
}
int main()
{
srand(time(NULL));
while(scanf("%I64u%I64u",&G,&L)!=EOF)
{
cnt=0;
find_fac(L/G,181);
sort(fac,fac+cnt);
LL i=0,t=0;
while(i<cnt)
{
LL ans=1,j=i;
while(j<cnt&&fac[i]==fac[j])
{
ans*=fac[i];
j++;
}
fac[t++]=ans;
i=j;
}
cnt=t,m=1,p=sqrt(0.0+(L/G));
dfs(0,1);
printf("%I64u %I64u\n",m*G,L/m);
}
return 0;
}

miller_rabin + pollard_rho模版的更多相关文章

  1. 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)

    注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...

  2. bzo4802 欧拉函数 miller_rabin pollard_rho

    欧拉函数 Time Limit: 5 Sec  Memory Limit: 256 MBSubmit: 1112  Solved: 418[Submit][Status][Discuss] Descr ...

  3. 随机算法 - Miller_Rabin pollard_rho

    #include<stdio.h> #include<string.h> #include<stdlib.h> #include<time.h> #in ...

  4. 计蒜客 18487.Divisions-大数的所有因子个数-Miller_Rabin+Pollard_rho-超快的(大数质因解+因子个数求解公式) (German Collegiate Programming Contest 2015 ACM-ICPC Asia Training League 暑假第一阶段第三场 F)

    这一场两个和大数有关的题目,都用到了米勒拉宾算法,有点东西,备忘一下. 题目传送门 F. Divisions 传送门 这个题是求一个数的所有因子个数,但是数据比较大,1e18,所以是大数的题目,正常的 ...

  5. BZOJ4802 欧拉函数 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8117744.html 题目传送门 - BZOJ4802 题意概括 Description 已知N,求phi(N) ...

  6. PLAN OF HEOI(unfinished)

    Au:整体二分/计算几何/多项式/fwtAg:可持久化重量平衡树/线段树分治/线段树合并/最短路树/最短路DAGCu:三分Up:博弈论/置换群/杜教筛/矩阵树定理/BSGS/动态树分治/网络流(线性规 ...

  7. 数论 - Miller_Rabin素数测试 + pollard_rho算法分解质因数 ---- poj 1811 : Prime Test

    Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 29046   Accepted: 7342 Case ...

  8. HDU-3864 D_num Miller_Rabin和Pollard_rho

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3864 题意:给定一个数n,求n的因子只有四个的情况. Miller_Rabin和Pollard_rho ...

  9. pollard_rho和Miller_Rabin

    Miller_Rabin就是以概论大小来判断素数 可以判断2^63范围的数 pollard_rho推荐两个很好的博客来理解:整数分解费马方法以及Pollard rho和[ZZ]Pollard Rho算 ...

随机推荐

  1. codevs 1683 车厢重组(水题日常)

    时间限制: 1 s  空间限制: 1000 KB  题目等级 : 白银 Silver 题目描述 Description 在一个旧式的火车站旁边有一座桥,其桥面可以绕河中心的桥墩水平旋转.一个车站的职工 ...

  2. UVA1665 Islands (并查集)

    补题,逆序考虑每个询问的时间,这样每次就变成出现新岛屿,然后用并查集合并统计.fa = -1表示没出现. 以前写过,但是几乎忘了,而且以前写得好丑的,虽然常数比较小,现在重新写练练手.每个单词后面都要 ...

  3. ObjectiveC中的赋值,对象拷贝,浅拷贝与深拷贝

    在开发过程中我们经常会遇到对象拷贝的问题,下面我们分别讨论赋值操作.对象拷贝.以及浅拷贝(Shallow copy)与深拷贝(Deep copy)的区别与各自的实现方式. 一.不同对象的赋值操作 Ob ...

  4. 线程锁(互斥锁Mutex)

    线程锁(互斥锁Mutex) 一个进程下可以启动多个线程,多个线程共享父进程的内存空间,也就意味着每个线程可以访问同一份数据,此时,如果2个线程同时要修改同一份数据,会出现什么状况? # -*- cod ...

  5. PAT (Basic Level) Practise (中文)-1035. 插入与归并(25)

    PAT (Basic Level) Practise (中文)-1035. 插入与归并(25)   http://www.patest.cn/contests/pat-b-practise/1035 ...

  6. ios之NSNumber

    NSNumber + (NSNumber *)numberWithInt:(int)value; + (NSNumber *)numberWithDouble:(double)value; - (in ...

  7. 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍

    1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...

  8. (43)zabbix报警媒介介绍

    zabbix触发器到了要发送通知的情况下,需要一个中间介质来接收并传递它的消息给运维们,以往用nagios,通常用脚本发送邮件或者发送飞信来达到报警.这个脚本实际上就是一个媒介了. zabbix有如下 ...

  9. Immutable 特性

    https://io-meter.com/2016/09/03/Functional-Go-persist-datastructure-intro/ 持久化的数据结构(Persistent Data ...

  10. python--网络编程之socket

    一 . 网络编程 CS架构 客户端服务端架构 服务端:提供服务的 客户端:享受服务的 BS架构:浏览器和服务端 网络通信流程: 集线器:将所有连接上它的电脑全部联通起来 交换机:升级版的集线器 网卡: ...