bzoj2186【SDOI2008】沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑
Time Limit: 10 Sec Memory Limit: 259 MB id=2186" style="color:blue; text-decoration:none">Submit id=2186" style="color:blue; text-decoration:none">Status
Submit: 2363 Solved: 779
[
Description
大富翁国由于通货膨胀,以及假钞泛滥。政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,可是,政府仅仅发行编号与M!互质的钞票。
房地产第一大户沙拉公主决定预測一下大富翁国如今全部真钞票的数量。
如今,请你帮助沙拉公主解决问题。由于可能张数很大,你仅仅需计算出对R取模后的答案就可以。R是一个质数。
Input
第一行为两个整数T,R。R<=10^9+10。T<=10000,表示该组中測试数据数目。R为模后面T行,每行一对整数N,M,见题目描写叙述 m<=n
Output
共T行。对于每一对N,M。输出1至N。中与M!素养的数的数量对R取模后的值
Sample Input
4 2
Sample Output
数据范围:
对于100%的数据,1 < = N , M < = 10000000
HINT
Source
欧拉函数+线性筛法+
乘法逆元
数论题的做法简直不能再6,感觉自己智商严重不够用…
首先答案为phi(m!)*n!/m!%p。由于全部小于m!且与m!互质的数加上m!的整数倍都与m!互质,而其它数都不与m!互质。(正确性显然)
那么这个式子怎么求呢???
我们能够分成两部分来求,phi(m!)/mi和n!。
n!%p是非常easy预处理的。这里的主要问题是怎样求phi(m!)/m!。
令f(m)=phi(m!)/m!,依据phi(x)=x*(p1-1)/p1*(p2-1)/p2*…
可得f(m)=(p1-1)/p1*(p2-1)/p2*…当中pi为不大于m的质数
所以对于f(i),假设i是质数f(i)=f(i-1)*(i-1)/m。否则f(i)=f(i-1)。
依据以上关系式能够预处理f(1)-f(10^7)。
每次询问仅仅须要输出f(m)*n!%p就可以。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define maxn 10000005
using namespace std;
int n,m,p,t;
ll fac[maxn],ans[maxn];
bool f[maxn];
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void exgcd(int a,int b,int &x,int &y)
{
if (!b){x=1;y=0;return;}
exgcd(b,a%b,x,y);
int t=x;x=y;y=t-a/b*x;
}
inline int getinv(int a)
{
int x=0,y=0;
exgcd(a,p,x,y);
return (x%p+p)%p;
}
int main()
{
t=read();p=read();
int x=10000000;
fac[1]=1;
F(i,2,x) fac[i]=fac[i-1]*i%p;
ans[1]=1;
F(i,2,x)
{
if (!f[i])
{
ans[i]=ans[i-1]*(i-1)%p*getinv(i)%p;
F(j,2,x/i) f[i*j]=true;
}
else ans[i]=ans[i-1];
}
while (t--)
{
n=read();m=read();
printf("%lld\n",ans[m]*fac[n]%p);
}
}
bzoj2186【SDOI2008】沙拉公主的困惑的更多相关文章
- BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 6103 Solved: 2060[Submit][S ...
- BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 5003 Solved: 1725 [Submit] ...
- [bzoj2186][Sdoi2008]沙拉公主的困惑_数论
沙拉公主的困惑 bzoj-2186 Sdoi-2008 题目大意:求N!中与M!互质的数的个数. 注释:$1\le N,M\le 10^7$. 想法:显然是求$\phi(M!)$.这东西其实只需要将数 ...
- BZOJ2186: [Sdoi2008]沙拉公主的困惑
传送门 常规数论题,利用欧拉函数的相关性质. 题求$[1,N!]$中与$M!$互质的数的个数,且$M \leq N$.然后根据欧拉函数的相关性质很容易得出这道题的答案为$\frac{\phi (M!) ...
- BZOJ2186 SDOI2008沙拉公主的困惑(数论)
由于n!是m!的倍数,而对于每个与m!互质且小于m!的数x,x+m!.x+2*m!……也与其互质,所以答案即为(n!/m!)*φ(m!). φ(m!)=m!*∏(1-1/pi).其中的pi即为1~m中 ...
- [bzoj2186][Sdoi2008]沙拉公主的困惑——数论
题目大意 求 \[\sum_{i = 1}^{N!} [gcd(i, M!) = 1]\] 题解 显然,题目就是求 \[N!(1-\frac{1}{p_1})(1-\frac{1}{p_2})...\ ...
- 【数论】【欧拉函数】【筛法求素数】【乘法逆元】【快速幂取模】bzoj2186 [Sdoi2008]沙拉公主的困惑
http://www.cnblogs.com/BLADEVIL/p/3490321.html http://www.cnblogs.com/zyfzyf/p/3997986.html 翻了翻题解,这两 ...
- 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数
[BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...
- 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数
[bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...
- 【bzoj2186】[Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3303 Solved: 1129[Submit][S ...
随机推荐
- 微信小程序组件解读和分析:四、icon图标
icon图标组件说明: icon是一种图标格式,用于系统图标.软件图标等,这种图标扩展名为.icon..ico.常见的软件或windows桌面上的那些图标一般都是ICON格式的.在应用上面很多地方 ...
- APP上线被APPStore拒绝的各种原因
1.程序有重大bug,程序不能启动,或者中途退出.2.绕过苹果的付费渠道,我们之前游戏里的用兑换码兑换金币.3.游戏里有实物奖励的话,一定要说清楚,奖励由本公司负责,和苹果没有关系.4.用到苹果的标志 ...
- JS高级——文件操作
https://www.cnblogs.com/mingmingruyuedlut/archive/2011/10/12/2208589.html https://blog.csdn.net/pl16 ...
- Angular——作用域
基本介绍 应用App是无法嵌套的,但是controller是可以嵌套的,每个controller都会对应一个模型(model)也就是$scope对象,不同层级的controller下的$scope遍产 ...
- for循环,字典遍历(一)
#items(): 返回字典中所有 key.value #keys(): 返回字典中所有 key 的列表 #values():返回字典中所有 value 的列表 my_dict = {'语文':89, ...
- Android studio升级后原有项目无法正常编译运行问题
Android studio工具升级后Gradle版本问题 背景 升级AndroidStudio到最新版本后,原来可正常编译输出AndroidTest的项目无法正常编译通过. 原因 升级后的Andro ...
- Object.prototype 原型和原型链
Object.prototype 原型和原型链 原型 Javascript中所有的对象都是Object的实例,并继承Object.prototype的属性和方法,有些属性是隐藏的.换句话说,在对象创建 ...
- 配置JSTL
1.去到官网下载好 4个包 http://tomcat.apache.org/download-taglibs.cgi 2.然后拷贝到 lib目录下 3.导入进去 后面的 C 代替了导入包的名字 4 ...
- TestNG多线程测试-注解方式实现
用@Test(invocationCount = x,threadPoolSize = y)声明,invocationCount表示执行次数,threadPoolSize表示线程池大小. packag ...
- centos7安装:license information(license not accepted)
安装centos7的时候明明已经选择了默认的许可证信息,不知道哪里出错了,安装到最后,就会显示license information(license not accepted)的信息.解决方法如下: ...