Coin Toss
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 3946   Accepted: 1076

Description

In a popular carnival game, a coin is tossed onto a table with an area that is covered with square tiles in a grid. The prizes are determined by the number of tiles covered by the coin when it comes to rest: the more tiles it covers, the better the prize. In the following diagram, the results from five coin tosses are shown:

In this example:

  • coin 1 covers 1 tile
  • coin 2 covers 2 tiles
  • coin 3 covers 3 tiles
  • coin 4 covers 4 tiles
  • coin 5 covers 2 tiles

Notice that it is acceptable for a coin to land on the boundary of the playing area (coin 5). In order for a coin to cover a tile, the coin must cover up a positive area of the tile. In other words, it is not enough to simply touch the boundary of the tile. The center of the coin may be at any point of the playing area with uniform probability. You may assume that (1) the coin always comes to a rest lying flat, and (2) the player is good enough to guarantee that the center of the coin will always come to rest on the playing area (or the boundary).

The probability of a coin covering a certain number of tiles depends on the tile and coin sizes, as well as the number of rows and columns of tiles in the playing area. In this problem, you will be required to write a program which computes the probabilities of a coin covering a certain number of tiles.

Input

The first line of input is an integer specifying the number of cases to follow. For each case, you will be given 4 integers m, n, t, and c on a single line, separated by spaces. The playing area consists of m rows and n columns of tiles, each having side length t. The diameter of the coin used is c. You may assume that 1 <= m, n <= 5000, and 1 <= c < t <= 1000.

Output

For each case, print the case number on its own line. This is followed by the probability of a coin covering 1 tile, 2 tiles, 3 tiles, and 4 tiles each on its own line. The probability should be expressed as a percentage rounded to 4 decimal places. Use the format as specified in the sample output. You should use double-precision floating-point numbers to perform the calculations. "Negative zeros" should be printed without the negative sign.

Separate the output of consecutive cases by a blank line.

Sample Input

3
5 5 10 3
7 4 25 20
10 10 10 4

Sample Output

Case 1:
Probability of covering 1 tile = 57.7600%
Probability of covering 2 tiles = 36.4800%
Probability of covering 3 tiles = 1.2361%
Probability of covering 4 tiles = 4.5239% Case 2:
Probability of covering 1 tile = 12.5714%
Probability of covering 2 tiles = 46.2857%
Probability of covering 3 tiles = 8.8293%
Probability of covering 4 tiles = 32.3135% Case 3:
Probability of covering 1 tile = 40.9600%
Probability of covering 2 tiles = 46.0800%
Probability of covering 3 tiles = 2.7812%
Probability of covering 4 tiles = 10.1788%

Source

题意:

  就是问一个半径为r的硬币扔在r*c由t*t正方形组成的格子,

  问覆盖一个格子,两个格子,三个格子,四个格子的概率,要求圆心必须在矩形上

题解:

  发现1,2,3,4组成的概率为1,然后发现3这种情况最难计算,所以计算出1,2,4,然后1去减就可以了。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<iostream>
using namespace std; const double PI=acos(-1.0),eps=1e-; int main()
{
int T,ca=;
for(scanf("%d",&T);T;T--)
{
double n,m,t,c,A[];
scanf("%lf%lf%lf%lf",&n,&m,&t,&c);
A[]=t*t*n*m;
A[]=(t-c)*(t-c)*n*m+(c*(t-c)+c*c/4.0)*+c*(t-c)*(n+m-);
A[]=*c*(t-c)*n*m-c*(t-c)*(n+m)+c*c*(n+m-);
A[]=PI*c*c/*(n-)*(m-);
A[]=A[]-A[]-A[]-A[];
printf("Case %d:\n",++ca);
for(int i=;i<=;i++)
printf("Probability of covering %d tile%s = %.4lf%%\n",i,(i==)?" ":"s",A[i]/A[]*100.0+eps);
printf("\n");
}
}

poj3440--Coin Toss(几何上的概率)的更多相关文章

  1. UVA 10328 - Coin Toss dp+大数

    题目链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_proble ...

  2. UVA 10328 Coin Toss

    Coin Toss Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UVA. Original ID: ...

  3. POJ 3440 Coin Toss(概率)

    题目链接 概率问题,像是概率论上学的均匀分布,是不是呢,忘了... 概率同面积有关系,我写的各种搓,然后此题格式十分变态,=前有的时候俩空格,有的时候一个空格.代码各种搓. #include < ...

  4. POJ 3440 Coin Toss(求概率)

    题目链接 题意 :把硬币往棋盘上扔,分别求出硬币占1,2,3,4个格子的时候的概率. 思路 : 求出公式输出,不过要注意输出格式,我还因为输入的时候用了int类型错了好几次..... #include ...

  5. poj 3440 Coin Toss 概率问题

    这题主要是推导数学公式!!! 将概率问题转化为圆心所在的面积! 代码如下: #include<iostream> #include<stdio.h> #include<a ...

  6. Coin Toss(uva 10328,动态规划递推,限制条件,至少转至多,高精度)

    有n张牌,求出至少有k张牌连续是正面的排列的种数.(1=<k<=n<=100) Toss is an important part of any event. When everyt ...

  7. UVa 10328 - Coin Toss (递推)

    题意:给你一个硬币,抛掷n次,问出现连续至少k个正面向上的情况有多少种. 原题中问出现连续至少k个H的情况,很难下手.我们可以试着将问题转化一下. 设dp[i][j]表示抛掷i个硬币出现连续至多j个H ...

  8. [USACO Hol10] 臭气弹 图上期望概率dp 高斯

    记住一开始和后来的经过是两个事件因此概率可以大于一 #include<cstdio> #include<iostream> #include<cstdlib> #i ...

  9. 题解 UVA10328 【Coin Toss】

    这道题目其实就是说有N张纸牌,问至少连续K张正面朝上的可能性是多少. 可以用递推做.首先我们将题目所求从 至少K张 转化为 总数 - 至多K张 (为什么要这样自己想) 设F[i][j]为前i个纸牌至多 ...

随机推荐

  1. Service官方教程(8)Bound Service示例之2-跨进程使用Messenger

    Compared to AIDL When you need to perform IPC, using a Messenger for your interface is simpler than ...

  2. ssm基础配置

    1.导包 <dependencies> <dependency> <groupId>org.springframework</groupId> < ...

  3. Linux 之 2>&1

    我们在Linux下经常会碰到nohup command>/dev/null 2>&1 &这样形式的命令.首先我们把这条命令大概分解下首先就是一个nohup表示当前用户和系统 ...

  4. 第一次阅读作业 xinzcover

    ---恢复内容开始--- 第一次阅读和准备作业 这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass1 这个作 ...

  5. Android学习笔记(十一) Intent

    一.Intent对象的基本概念 -Intent是Android应用程序组件之一 -Intent对象在Android系统当中表示一种意图 -Intent当中最重要的内容是action与data 二.In ...

  6. InChatter系统之服务端的Windows服务寄宿方式(三)

    为了部署的方便,我们开发Windows服务的服务寄宿程序,这样我们的服务便可以作为系统服务,随着系统的启动和关闭而启动和关闭,而避免了其他的设置,同时在服务的终止时(如系统关闭等)能及时处理服务的关闭 ...

  7. JavaScript——XMLHttpRequest 家族

    https://www.zhangxinxu.com/wordpress/2013/10/understand-domstring-document-formdata-blob-file-arrayb ...

  8. Farseer.net轻量级ORM开源框架 V1.x 入门篇:表实体类映射

    导航 目   录:Farseer.net轻量级ORM开源框架 目录 上一篇:Farseer.net轻量级ORM开源框架 V1.x 入门篇:数据库上下文 下一篇:Farseer.net轻量级ORM开源框 ...

  9. python mail

    转载一个不错python mail封装 #!/usr/bin/python from email.MIMEText import MIMEText from email.MIMEMultipart i ...

  10. C++学习随笔

    今天试着变了下实验二里边的有关面向对象的实验,深深地觉得我对面向对象的编程的理解还是很浅显,以至于对于对象的调用也是瞎整.居然直接就去调用继承来的函数,连生成一个对象这种基础应用都不知道.对自己的基础 ...