poj3440--Coin Toss(几何上的概率)
| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 3946 | Accepted: 1076 |
Description
In a popular carnival game, a coin is tossed onto a table with an area that is covered with square tiles in a grid. The prizes are determined by the number of tiles covered by the coin when it comes to rest: the more tiles it covers, the better the prize. In the following diagram, the results from five coin tosses are shown:

In this example:
- coin 1 covers 1 tile
- coin 2 covers 2 tiles
- coin 3 covers 3 tiles
- coin 4 covers 4 tiles
- coin 5 covers 2 tiles
Notice that it is acceptable for a coin to land on the boundary of the playing area (coin 5). In order for a coin to cover a tile, the coin must cover up a positive area of the tile. In other words, it is not enough to simply touch the boundary of the tile. The center of the coin may be at any point of the playing area with uniform probability. You may assume that (1) the coin always comes to a rest lying flat, and (2) the player is good enough to guarantee that the center of the coin will always come to rest on the playing area (or the boundary).
The probability of a coin covering a certain number of tiles depends on the tile and coin sizes, as well as the number of rows and columns of tiles in the playing area. In this problem, you will be required to write a program which computes the probabilities of a coin covering a certain number of tiles.
Input
Output
Separate the output of consecutive cases by a blank line.
Sample Input
3
5 5 10 3
7 4 25 20
10 10 10 4
Sample Output
Case 1:
Probability of covering 1 tile = 57.7600%
Probability of covering 2 tiles = 36.4800%
Probability of covering 3 tiles = 1.2361%
Probability of covering 4 tiles = 4.5239% Case 2:
Probability of covering 1 tile = 12.5714%
Probability of covering 2 tiles = 46.2857%
Probability of covering 3 tiles = 8.8293%
Probability of covering 4 tiles = 32.3135% Case 3:
Probability of covering 1 tile = 40.9600%
Probability of covering 2 tiles = 46.0800%
Probability of covering 3 tiles = 2.7812%
Probability of covering 4 tiles = 10.1788%
Source
题意:
就是问一个半径为r的硬币扔在r*c由t*t正方形组成的格子,
问覆盖一个格子,两个格子,三个格子,四个格子的概率,要求圆心必须在矩形上
题解:
发现1,2,3,4组成的概率为1,然后发现3这种情况最难计算,所以计算出1,2,4,然后1去减就可以了。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<iostream>
using namespace std; const double PI=acos(-1.0),eps=1e-; int main()
{
int T,ca=;
for(scanf("%d",&T);T;T--)
{
double n,m,t,c,A[];
scanf("%lf%lf%lf%lf",&n,&m,&t,&c);
A[]=t*t*n*m;
A[]=(t-c)*(t-c)*n*m+(c*(t-c)+c*c/4.0)*+c*(t-c)*(n+m-);
A[]=*c*(t-c)*n*m-c*(t-c)*(n+m)+c*c*(n+m-);
A[]=PI*c*c/*(n-)*(m-);
A[]=A[]-A[]-A[]-A[];
printf("Case %d:\n",++ca);
for(int i=;i<=;i++)
printf("Probability of covering %d tile%s = %.4lf%%\n",i,(i==)?" ":"s",A[i]/A[]*100.0+eps);
printf("\n");
}
}
poj3440--Coin Toss(几何上的概率)的更多相关文章
- UVA 10328 - Coin Toss dp+大数
题目链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_proble ...
- UVA 10328 Coin Toss
Coin Toss Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UVA. Original ID: ...
- POJ 3440 Coin Toss(概率)
题目链接 概率问题,像是概率论上学的均匀分布,是不是呢,忘了... 概率同面积有关系,我写的各种搓,然后此题格式十分变态,=前有的时候俩空格,有的时候一个空格.代码各种搓. #include < ...
- POJ 3440 Coin Toss(求概率)
题目链接 题意 :把硬币往棋盘上扔,分别求出硬币占1,2,3,4个格子的时候的概率. 思路 : 求出公式输出,不过要注意输出格式,我还因为输入的时候用了int类型错了好几次..... #include ...
- poj 3440 Coin Toss 概率问题
这题主要是推导数学公式!!! 将概率问题转化为圆心所在的面积! 代码如下: #include<iostream> #include<stdio.h> #include<a ...
- Coin Toss(uva 10328,动态规划递推,限制条件,至少转至多,高精度)
有n张牌,求出至少有k张牌连续是正面的排列的种数.(1=<k<=n<=100) Toss is an important part of any event. When everyt ...
- UVa 10328 - Coin Toss (递推)
题意:给你一个硬币,抛掷n次,问出现连续至少k个正面向上的情况有多少种. 原题中问出现连续至少k个H的情况,很难下手.我们可以试着将问题转化一下. 设dp[i][j]表示抛掷i个硬币出现连续至多j个H ...
- [USACO Hol10] 臭气弹 图上期望概率dp 高斯
记住一开始和后来的经过是两个事件因此概率可以大于一 #include<cstdio> #include<iostream> #include<cstdlib> #i ...
- 题解 UVA10328 【Coin Toss】
这道题目其实就是说有N张纸牌,问至少连续K张正面朝上的可能性是多少. 可以用递推做.首先我们将题目所求从 至少K张 转化为 总数 - 至多K张 (为什么要这样自己想) 设F[i][j]为前i个纸牌至多 ...
随机推荐
- java使用正则表达式对注册页面进行验证
package regex; import java.util.Scanner; import java.util.regex.Matcher; import java.util.regex.Patt ...
- sed与正则表达式
行的开头(^) ^匹配每一行的开头 [root@sishen ~]# sed -n '/^103/ p ' employee.txt 103,Raj Reddy,Sysadmin 只有^出现在正则表达 ...
- [转]Entity Framework and SQL Azure
本文转自:https://msdn.microsoft.com/zh-cn/library/gg190738 Julie Lerman http://thedatafarm.com April 201 ...
- VS Code 设置取消打开文件目录的自动定位跟踪功能。
文件-->首选项-->设置-->在搜索栏中搜索:explorer.autoReveal; 去掉勾选即可.
- (五)Mybatis总结之一对多、一对一
一对多 业务场景:张三既是java开发师又是大学老师又是LOL代练,张三拥有多个角色. 1.创建实体类UserInfo和RoleInfo package com.qf.mybatisdemo.pojo ...
- subprocess模块和sys模块
1.import sys # sys.path # sys.argv # 用来接收python解释器执行py文件后跟的参数#例如:python cp.py argv1 argv2 arg3#sys.a ...
- poj3368 Frequent values
思路: 转化为RMQ. 实现: #include <cstdio> #include <cstring> #include <algorithm> using na ...
- springmvc系列一 之配置介绍(包含官网doc)
1.springmvc 官网参考地址: https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html 2 ...
- Net作业调度
Net作业调度(一) -Quartz.Net入门 2014-11-01 13:14 by 蘑菇先生, 13954 阅读, 7 评论, 收藏, 编辑 背景 很多时候,项目需要在不同时刻,执行一个或很多个 ...
- discuz 插件核心函数hookscript分析.
function hookscript($script, $hscript, $type = 'funcs', $param = array(), $func = '', $scriptextra = ...