[NOIP2006] 提高组 洛谷P1064 金明的预算方案
题目描述
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
主件 附件
电脑 打印机,扫描仪
书柜 图书
书桌 台灯,文具
工作椅 无
如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,……,jk,则所求的总和为:
v[j1]*w[j1]+v[j2]*w[j2]+ …+v[jk]*w[jk]。(其中*为乘号)
请你帮助金明设计一个满足要求的购物单。
输入输出格式
输入格式:
输入的第1行,为两个正整数,用一个空格隔开:
N m (其中N(<32000)表示总钱数,m(<60)为希望购买物品的个数。)
从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有3个非负整数
v p q (其中v表示该物品的价格(v<10000),p表示该物品的重要度(1~5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号)
输出格式:
输出只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000)。
输入输出样例
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
2200
说明
NOIP 2006 提高组 第二题
树形DP
然而可以偷个懒,因为附件最多只有两种,所以规划每个物品的时候考虑选不选附件的几种决策即可。
/*by SilverN*/
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct mono{
int w,v;
bool ma,f1,f2;
int w1,v1,w2,v2;
}a[];
int cnt;
int n,m;
int f[];
int main(){
int i,j;
n=read();m=read();
int v,p,q;
for(i=;i<=m;++i){
v=read();p=read();q=read();
if(!q){ a[i].ma=; a[i].v=v; a[i].w=v*p; }
else{
if(!a[q].f1){a[q].f1=;a[q].v1=v;a[q].w1=v*p;}
else{a[q].f2=; a[q].v2=v; a[q].w2=v*p;}
}
}
cnt=;
for(i=;i<=m;i++)if(a[i].ma) a[++cnt]=a[i];
for(i=;i<=cnt;i++){
for(j=n;j>=a[i].v;--j){
f[j]=max(f[j],f[j-a[i].v]+a[i].w);
if(a[i].f1 && j>=a[i].v+a[i].v1){
f[j]=max(f[j],f[j-a[i].v-a[i].v1]+a[i].w+a[i].w1);
}
if(a[i].f2 && j>=a[i].v+a[i].v2){
f[j]=max(f[j],f[j-a[i].v-a[i].v2]+a[i].w+a[i].w2);
}
if(a[i].f2 && j>=a[i].v+a[i].v1+a[i].v2){
f[j]=max(f[j],f[j-a[i].v-a[i].v1-a[i].v2]+a[i].w+a[i].w1+a[i].w2);
}
}
}
int ans=;
for(i=;i<=n;++i)ans=max(ans,f[i]);
printf("%d\n",ans);
return ;
}
[NOIP2006] 提高组 洛谷P1064 金明的预算方案的更多相关文章
- 洛谷P1064 金明的预算方案
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”. ...
- 洛谷 P1064 金明的预算方案【有依赖的分组背包】
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:"你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱 ...
- 洛谷 P1064 金明的预算方案(有依赖的背包问题)
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”.今 ...
- 洛谷 P1064 金明的预算方案
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”.今 ...
- 洛谷 P1064 金明的预算方案 (有依赖的0/1背包)
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”. ...
- 洛谷P1064 金明的预算方案(01背包)
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NNN元钱就行” ...
- Java实现 洛谷 P1064 金明的预算方案
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:"你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元 ...
- 洛谷 P1064 金明的预算方案(01背包问题)
传送门:Problem 1064 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是 “01”背包问题的变形. 如果不考虑买附件必 ...
- 洛谷 P1064 金明的预算方案【DP/01背包-方案数】
题目背景 uim神犇拿到了uoi的ra(镭牌)后,立刻拉着基友小A到了一家--餐馆,很低端的那种. uim指着墙上的价目表(太低级了没有菜单),说:"随便点". 题目描述 不过ui ...
随机推荐
- SecureCRT 迁移到新环境,导出配置文件目录 转
SecureCRT 打开SecureCRT,点击菜单栏的“选项”--“全局选项” 在打开的窗口中,选择“常规”,在右侧找到“配置文件夹”,这个就是SecureCRT的配置文件目录. 复制这个路径并且进 ...
- 436 Find Right Interval 寻找右区间
给定一组区间,对于每一个区间 i,检查是否存在一个区间 j,它的起始点大于或等于区间 i 的终点,这可以称为 j 在 i 的“右侧”.对于任何区间,你需要存储的满足条件的区间 j 的最小索引,这意味着 ...
- javaweb-JSP action中附件下载的写法
附件下载(包括图片,exl,word)在前台必须给出一个iframe 或者类似于window的窗口,另外,Java文件下载不能通过ajax进行请求,必须添加src属性首选,前台的链接拼接html如下 ...
- nvm安装nodejs
1. 安装nvm 下载 nvm-windows解压缩 nvm-windows解压缩 nvm-setup双击运行 nvm-setup.exe选择next选择 [D:\dev][path1] 或 默认路径 ...
- php(三)使用PDO链接数据库
1.启动 mysql数据库,打开图形化控制界面 2.新建一个数据库 3.创建一个数据表 4.给数据表添加数据 id是数字类型的 类型选择int长度 11 username 等其他数据 会是字符串形 ...
- 一致性hash学习
一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简 单哈 ...
- Vue+Bootstrap实现购物车程序(3)
效果展示:(说明:使用webpack重构购物车程序,使用vue-cli生成项目脚手架) 文件结构: 代码: (1)将原来编写的btn-grp组件单独编写到BtnGrp.vue文件中 可以看到现在代码清 ...
- Domain Adaptation论文笔记
领域自适应问题一般有两个域,一个是源域,一个是目标域,领域自适应可利用来自源域的带标签的数据(源域中有大量带标签的数据)来帮助学习目标域中的网络参数(目标域中很少甚至没有带标签的数据).领域自适应如今 ...
- java.lang.NoClassDefFoundError: org.springframework.beans.FatalBeanException
在进行Spring和Hibernate整合的时候遇到了这个问题, 问题描述如下 问题原因? Spring的Bean的XML配置文件存在错误 解决方法: 正确的配置XML文件,例如下面的代码 < ...
- 17Web服务器端控件
Web服务器端控件 Web服务器端控件 ASP.Net提供了两类服务器端控件:Html服务器端控件和Web服务器端控件.由于Web服务器端控件功能更强大,和Windows应用程序的控件使用方法类似,容 ...