[bzoj3879]SvT_后缀数组_RMQ_单调栈
SvT bzoj-3879
题目大意:给定一个字符串。每次询问给定$t$个位置,求两两位置开头的后缀的$LCP$之和。
注释:$1\le length\le 5\cdot 10^5$,$\sum t\le 3\cdot 10^6$。
想法:
不难想到构建后缀数组。
进而我们的问题就转化成了给定序列上一些位置求这些位置两两之间区间最小值的和。
对$ht$数组建立$ST$表。
接下来的过程可以用单调栈维护。
Code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 500010
using namespace std; typedef long long ll;
int n,m,wa[N],wb[N],wv[N],sa[N],height[N],rank[N],r[N],Ws[N];
char ch[N];
int f[21][N],L[N],vis[N],s[N],g[N];
int v[3000050],Q[3000050];
ll dp[N];
inline char nc()
{
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int rd()
{
int x=0; char c=nc();
while(c<'0'||c>'9') c=nc();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-'0',c=nc();
return x;
}
inline int rc()
{
char c=nc();
while(c<'a'||c>'z') c=nc();
return (int)c;
} void build_sa()
{
m=27;
int i,j,p,*x=wa,*y=wb,*t;
for(i=0;i<m;i++) Ws[i]=0;
for(i=0;i<n;i++) Ws[x[i]=r[i]]++;
for(i=1;i<m;i++) Ws[i]+=Ws[i-1];
for(i=n-1;i>=0;i--) sa[--Ws[x[i]]]=i;
for(p=j=1;p<n;j<<=1,m=p)
{
for(p=0,i=n-j;i<n;i++) y[p++]=i;
for(i=0;i<n;i++) if(sa[i]-j>=0) y[p++]=sa[i]-j;
for(i=0;i<n;i++) wv[i]=x[y[i]];
for(i=0;i<m;i++) Ws[i]=0;
for(i=0;i<n;i++) Ws[wv[i]]++;
for(i=1;i<m;i++) Ws[i]+=Ws[i-1];
for(i=n-1;i>=0;i--) sa[--Ws[wv[i]]]=y[i];
for(t=x,x=y,y=t,i=p=1,x[sa[0]]=0;i<n;i++)
{
if(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+j]==y[sa[i-1]+j]) x[sa[i]]=p-1;
else x[sa[i]]=p++;
}
}
for(i=1;i<n;i++) rank[sa[i]]=i;
for(i=p=0;i<n-1;height[rank[i++]]=p)
for(p?p--:0,j=sa[rank[i]-1];r[i+p]==r[j+p];p++);
}
int get_min(int l,int r)
{
int len=L[r-l+1];
return min(f[len][l],f[len][r-(1<<len)+1]);
}
void ST()
{
int i,j;
for(i=2;i<=n;i++) L[i]=L[i>>1]+1;
for(i=1;i<=n;i++) f[0][i]=height[i];
for(i=1;(1<<i)<=n;i++)
{
for(j=1;j+(1<<i)-1<=n;j++) f[i][j]=min(f[i-1][j],f[i-1][j+(1<<(i-1))]);
}
}
bool cmp(int x,int y)
{
return rank[x]<rank[y];
}
int main()
{
int T;
n=rd(); T=rd();
int i;
for(i=0;i<n;i++) r[i]=rc()-'a'+1;
r[n++]=0;
int tot=0;
build_sa(); n--; ST();
while(T--)
{
tot++;
int t=0;
v[0]=rd();
int j;
for(j=1;j<=v[0];j++)
{
v[j]=rd();
v[j]--;
if(vis[v[j]]==tot) {j--; v[0]--;}
vis[v[j]]=tot;
}
sort(v+1,v+v[0]+1,cmp);
for(j=1;j<v[0];j++)
{
g[j]=get_min(rank[v[j]]+1,rank[v[j+1]]);
}
t=1; Q[1]=0;
long long ans=0;
for(j=1;j<v[0];j++)
{
while(t&&g[Q[t]]>g[j]) t--;
dp[j]=dp[Q[t]]+1ll*(j-Q[t])*g[j];
ans+=dp[j];
Q[++t]=j;
}
printf("%lld\n",ans);
}
return 0;
}
小结:后缀数组真好玩。
[bzoj3879]SvT_后缀数组_RMQ_单调栈的更多相关文章
- poj3415 Common Substrings(后缀数组,单调栈 | 后缀自动机)
[题目链接] http://poj.org/problem?id=3415 [题意] A与B长度至少为k的公共子串个数. [思路] 基本思想是将AB各个后缀的lcp-k+1的值求和.首先将两个字符串拼 ...
- [bzoj3238][Ahoi2013]差异_后缀数组_单调栈
差异 bzoj-3238 Ahoi-2013 题目大意:求任意两个后缀之间的$LCP$的和. 注释:$1\le length \le 5\cdot 10^5$. 想法: 两个后缀之间的$LCP$和显然 ...
- 洛谷P2178 [NOI2015]品酒大会 后缀数组+单调栈
P2178 [NOI2015]品酒大会 题目链接 https://www.luogu.org/problemnew/show/P2178 题目描述 一年一度的"幻影阁夏日品酒大会" ...
- Gym - 102028H Can You Solve the Harder Problem? (后缀数组+RMQ+单调栈)
题意:求一个序列中本质不同的连续子序列的最大值之和. 由于要求“本质不同”,所以后缀数组就派上用场了,可以从小到大枚举每个后缀,对于每个sa[i],从sa[i]+ht[i]开始枚举(ht[0]=0), ...
- 洛谷4248 AHOI2013差异 (后缀数组SA+单调栈)
补博客! 首先我们观察题目中给的那个求\(ans\)的方法,其实前两项没什么用处,直接\(for\)一遍就求得了 for (int i=1;i<=n;i++) ans=ans+i*(n-1); ...
- 【POJ3415】Common Substrings(后缀数组,单调栈)
题意: n<=1e5 思路: 我的做法和题解有些不同 题解是维护A的单调栈算B的贡献,反过来再做一次 我是去掉起始位置不同这个限制条件先算总方案数,再把两个串内部不合法的方案数减去 式子展开之后 ...
- 【BZOJ3238】差异(后缀数组,单调栈)
题意: 思路:显然len(t[i])+len(t[j])这部分的和是一定的 那么问题就在于如何快速求出两两之间lcp之和 考虑将它们排名后用SA可以很方便的求出lcp,且对答案没有影响,因为形式都是数 ...
- POJ.3145.Common Substrings(后缀数组 倍增 单调栈)
题目链接 \(Description\) 求两个字符串长度不小于k的公共子串对数. \(Solution\) 求出ht[]后先减去k,这样对于两个后缀A',B',它们之间的贡献为min{ht(A)}( ...
- BZOJ3879:SvT(后缀数组,单调栈,ST表)
Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个询问,我们给出若干个后缀(以其在S中出现的起始 ...
随机推荐
- 关于OPPO手机的生存和程序员的发展
关于程序员私下讨论最多的话题,除了哪个编程最牛逼之外,哪款品牌的手机最牛逼也是我们谈论最多的话题之一吧!有的喜欢罗永浩,自然就是锤粉:有的喜欢苹果,称它为工业时代最优美的艺术品:当然,我想也有很多的人 ...
- Java多线程——线程的创建方式
Java多线程——线程的创建方式 摘要:本文主要学习了线程的创建方式,线程的常用属性和方法,以及线程的几个基本状态. 部分内容来自以下博客: https://www.cnblogs.com/dolph ...
- [翻译] API测试最佳实践 - 组织你的测试
组织你的测试 适用级别:初学者 在最底层,一个测试步骤(Test Step)用来验证一个单独的操作.组合若干测试步骤到测试用例,允许你验证那些被分隔出来的一个一个的功能,这些功能是应用程序所需要的.接 ...
- CAS4.0 server 环境的搭建
1.上cas的官网下载cas server 官网地址:https://github.com/Jasig/cas/releases,下载好后 解压下载的 cas-server-4.0.0-release ...
- HTML5——动画延迟的另外一种方式
https://www.cnblogs.com/hhhhhh/p/5758167.html
- Farseer.net轻量级ORM开源框架 V1.x 入门篇:表实体类映射
导航 目 录:Farseer.net轻量级ORM开源框架 目录 上一篇:Farseer.net轻量级ORM开源框架 V1.x 入门篇:数据库上下文 下一篇:Farseer.net轻量级ORM开源框 ...
- python_MachineLearning_感知机PLA
感知机:线性二类分类器(linear binary classifier) 感知机(perceptron)是二类分类的线性模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值.感知机对 ...
- C#override与new修饰隐藏的区别(转载)
C#比java多一个new隐藏的功能.C# override重写相当于java中没有关键字的方法重写.所以java中方法是没有隐藏功能的. C# override重写,是指对父类中的虚方法(标记vir ...
- linux远程开机
它需要wakeonlan这个软件, 从何处得到它? 它的官方站是:http://sourceforge.net/projects/wake-on-lan/ 如果使用rpm包可以 ...
- IIS更改根目录
服务器中打开IIS管理器,选择网站,再选展开后的站点,点击右边高级设置,最后更改弹框中的物理地址即可: