论静态查错的重要性。。。乱搞题真难调

首先这题看起来就是要分治检验了。

考虑对于区间[l,r],分成[l,p-1]和[p,r]使得这两个区间合并可以得到[l,r],并且要保证后面一个区间较大

设前一个区间长度为pL,合法只有i∈[p,r],i和(i-p)%pL有一条边,并且(i-p)%pL是i第一个连向的区间里面的点,并且i连向的第二个点不能<p

维护一个排过序的邻接表,last数组表示在当前区间内第x个点指向的第1个点,对于前两个条件,我们可以理解为找一个长度pL,假设<=l+pL-1的点都指向自己,那么整个区间的指向构成一个l~l+pL-1的循环

而对于当前区间分割,l一定是归于左边的

把所有和l右边的代入验证是一个基本的思路,但其实我们试两次就够了

考虑对于区间[l,(r-l+1)/2]指向l的最后一个点p,如果要分割,它一定是要归到右区间的

此时我们先找出它进行一次验证,当验证到某个点失配的时候跳出,假设这个点为u

不难发现,只有匹配长度没有超过pL,才有可能有另外的方案,否则循环节的长度已经被确定了,此时我们知道:[p,u-1]和[l,l+u-1-p]是匹配的,而到达u开始失配,那么u只能指向l构成循环节,才有合法的可能

那么通过p和u就确定了循环节长度,我们只需要验证l+u-p即可

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath> using namespace std; struct node
{
int x,y,next;
}a[];int len,last[];
void ins(int x,int y)
{
len++;
a[len].x=x;a[len].y=y;
a[len].next=last[x];last[x]=len;
}
int check(int p,int l,int r)
{
int pL=p-l,flag=;
for(int x=p,q=;x<=r;x++,q++,q%=pL)
{
int k=last[x];
if(k==||a[k].y!=l+q)
{
if(a[k].y==l)return x;
else return -;
}
else if(a[k].next!=&&a[a[k].next].y<p)flag=-;
}
return flag;
}
bool divi(int l,int r)
{
if(l==r)return true;
for(int x=l;x<=r;x++)
while(last[x]!=&&a[last[x]].y<l)last[x]=a[last[x]].next;
if(l+==r)
if(last[r]!=&&a[last[r]].y==l&&a[last[r]].next==)return true; int p=-,L=r-l+;
for(int x=r-;x>l;x--)
if(last[x]!=&&a[last[x]].y==l&&(x-l)*<=L){p=x;break;}
int x=p;
if(x==-)return false; int z=check(x,l,r);
if(z==)
{
if(divi(l,p-)&&divi(p,r))return true;
}
else if(z!=-)
{
if(z-x>x-l)return false;
int u=l+(z-x);
if(check(u,l,r)==&&divi(l,u-)&&divi(u,r))return true;
}
return false;
} struct edge{int x,y;}e[];
bool cmp(edge e1,edge e2){return e1.x>e2.x;}
int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
int T;
scanf("%d",&T);
while(T--)
{
int n,m; bool bk=true;
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d%d",&e[i].x,&e[i].y);
if(e[i].x>e[i].y)swap(e[i].x,e[i].y);
if(e[i].x==e[i].y)bk=false;
}
if(bk==false){printf("NO\n");continue;} sort(e+,e+m+,cmp);
len=;memset(last,,sizeof(last));
for(int i=;i<=m;i++)ins(e[i].y,e[i].x);
if(divi(,n-))printf("YES\n");
else printf("NO\n");
} return ;
}

bzoj4594: [Shoi2015]零件组装机的更多相关文章

  1. 【LOJ】#2040. 「SHOI2015」零件组装机

    题解 我写的应该有bug但是我懒得改了 就是最后一次合并的n要么是0点边集的最后一条边,要么是0点边集最后两条边的差,我们分别拎出来判断一下哪个可行(也许两个都可行,但是我不想多做修改了--) 然后递 ...

  2. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  3. 洛谷 P4269 / loj 2041 [SHOI2015] 聚变反应炉 题解【贪心】【DP】

    树上游戏..二合一? 题目描述 曾经发明了零件组装机的发明家 SHTSC 又公开了他的新发明:聚变反应炉--一种可以产生大量清洁能量的神秘装置. 众所周知,利用核聚变产生的能量有两个难点:一是控制核聚 ...

  4. SHOI做题记录

    LOJ #2027. 「SHOI2016」黑暗前的幻想乡 考虑到每个公司一条边,那就等价于没有任何一家公司没有边. 然后就可以容斥+矩阵树定理,没了. LOJ #2028. 「SHOI2016」随机序 ...

  5. luogu[2093]零件分组

    题目描述 某工厂生产一批棍状零件,每个零件都有一定的长度(Li)和重量(Wi).现在为了加工需要,要将它们分成若干组,使每一组的零件都能排成一个长度和重量都不下降(若i<j,则Li<=Lj ...

  6. 零件分组_DP

    问题 C: 零件分组 时间限制: 1 Sec  内存限制: 64 MB提交: 31  解决: 14[提交][状态][讨论版] 题目描述 某工厂生产一批棍状零件,每个零件都有一定的长度(Li)和重量(W ...

  7. Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Stat ...

  8. 基于Intranet的零件库管理信息系统设计--part01

    好吧,临近毕业的我,毕业设计还没开始做呢.时间不等人,再过两个月就要答辩了,我得开始做我的毕设了,虽然我现在还没能力完全把毕设做出来,但总得先迈出第一步吧.今天先做一小部分. 话不多说,先来看我得毕业 ...

  9. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

随机推荐

  1. Redis 主从复制与哨兵

    Redis 可以使用从属服务器来实现读写分离提高吞吐量或在主服务器故障时接替主服务器以提高可用性. 每个 Redis 服务器实例都可以配置多个 slave 节点,slave 服务器也可以拥有次级 sl ...

  2. UI进阶 XML解析适配 'libxml/tree.h'file not found 错误解决办法

    Xcode 'libxml/tree.h'file not found 错误解决办法

  3. linux进程按启动时间排序命令

    show me the code... ps aux --sort=start_time|grep Full|grep -v grep

  4. Sublime Text 3使用方法

    一.下载安装 Sbulime Text 3官网   参考网站:http://lucida.me/blog/sublime-text-complete-guide/注意在安装时勾选Add to expl ...

  5. JIRA 6.3.6安装

    一:下载JIRA 从官网下载:https://www.atlassian.com/software/jira/download 我下载的版本是Linux版的 JIRA 6.3.6 wget http: ...

  6. MTK andorid从底层到上层添加驱动

    1 [编写linux驱动程序] 1.1 一.编写驱动核心程序 1.2 二.配置Kconfig 1.3 三.配置Makefile 1.4 四.配置系统的autoconfig 1.5 五.编译 2 [编写 ...

  7. 洛谷——P2820 局域网

    P2820 局域网 题目背景 某个局域网内有n(n<=100)台计算机,由于搭建局域网时工作人员的疏忽,现在局域网内的连接形成了回路,我们知道如果局域网形成回路那么数据将不停的在回路内传输,造成 ...

  8. OO第三单元总结--根据JML写代码

    一. JML语言 1. 理论基础 首先,JML不是JAVA的一部分,它是一群研究者为JAVA设计的扩展部分,但还没有得到官方的支持.因此,JAVA编译器并不支持JML,所以要想JML起作用,只能采用类 ...

  9. JVM(零):走入JVM

    JVM(零):走入JVM 本系列主要讲述JVM相关知识,作为本系列的第一篇文章,本文从Java为什么是一个跨平台的语音开始介绍,逐步引入Java虚拟机的概念,并给出一个JVM相关知识图谱,可以让读者从 ...

  10. Linux下异常信号

    我们介绍一些标准信号的名称以及它们代表的事件.每一个信号名称是一个代表正整数的宏,但是你不要试图去推测宏代表的具体数值,而是直接使用名称.这是因为这个数值会随不同的系统或同样系统的不同版本而不同,但是 ...