bzoj4594: [Shoi2015]零件组装机
论静态查错的重要性。。。乱搞题真难调
首先这题看起来就是要分治检验了。
考虑对于区间[l,r],分成[l,p-1]和[p,r]使得这两个区间合并可以得到[l,r],并且要保证后面一个区间较大
设前一个区间长度为pL,合法只有i∈[p,r],i和(i-p)%pL有一条边,并且(i-p)%pL是i第一个连向的区间里面的点,并且i连向的第二个点不能<p
维护一个排过序的邻接表,last数组表示在当前区间内第x个点指向的第1个点,对于前两个条件,我们可以理解为找一个长度pL,假设<=l+pL-1的点都指向自己,那么整个区间的指向构成一个l~l+pL-1的循环
而对于当前区间分割,l一定是归于左边的
把所有和l右边的代入验证是一个基本的思路,但其实我们试两次就够了
考虑对于区间[l,(r-l+1)/2]指向l的最后一个点p,如果要分割,它一定是要归到右区间的
此时我们先找出它进行一次验证,当验证到某个点失配的时候跳出,假设这个点为u
不难发现,只有匹配长度没有超过pL,才有可能有另外的方案,否则循环节的长度已经被确定了,此时我们知道:[p,u-1]和[l,l+u-1-p]是匹配的,而到达u开始失配,那么u只能指向l构成循环节,才有合法的可能
那么通过p和u就确定了循环节长度,我们只需要验证l+u-p即可
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath> using namespace std; struct node
{
int x,y,next;
}a[];int len,last[];
void ins(int x,int y)
{
len++;
a[len].x=x;a[len].y=y;
a[len].next=last[x];last[x]=len;
}
int check(int p,int l,int r)
{
int pL=p-l,flag=;
for(int x=p,q=;x<=r;x++,q++,q%=pL)
{
int k=last[x];
if(k==||a[k].y!=l+q)
{
if(a[k].y==l)return x;
else return -;
}
else if(a[k].next!=&&a[a[k].next].y<p)flag=-;
}
return flag;
}
bool divi(int l,int r)
{
if(l==r)return true;
for(int x=l;x<=r;x++)
while(last[x]!=&&a[last[x]].y<l)last[x]=a[last[x]].next;
if(l+==r)
if(last[r]!=&&a[last[r]].y==l&&a[last[r]].next==)return true; int p=-,L=r-l+;
for(int x=r-;x>l;x--)
if(last[x]!=&&a[last[x]].y==l&&(x-l)*<=L){p=x;break;}
int x=p;
if(x==-)return false; int z=check(x,l,r);
if(z==)
{
if(divi(l,p-)&&divi(p,r))return true;
}
else if(z!=-)
{
if(z-x>x-l)return false;
int u=l+(z-x);
if(check(u,l,r)==&&divi(l,u-)&&divi(u,r))return true;
}
return false;
} struct edge{int x,y;}e[];
bool cmp(edge e1,edge e2){return e1.x>e2.x;}
int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
int T;
scanf("%d",&T);
while(T--)
{
int n,m; bool bk=true;
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d%d",&e[i].x,&e[i].y);
if(e[i].x>e[i].y)swap(e[i].x,e[i].y);
if(e[i].x==e[i].y)bk=false;
}
if(bk==false){printf("NO\n");continue;} sort(e+,e+m+,cmp);
len=;memset(last,,sizeof(last));
for(int i=;i<=m;i++)ins(e[i].y,e[i].x);
if(divi(,n-))printf("YES\n");
else printf("NO\n");
} return ;
}
bzoj4594: [Shoi2015]零件组装机的更多相关文章
- 【LOJ】#2040. 「SHOI2015」零件组装机
题解 我写的应该有bug但是我懒得改了 就是最后一次合并的n要么是0点边集的最后一条边,要么是0点边集最后两条边的差,我们分别拎出来判断一下哪个可行(也许两个都可行,但是我不想多做修改了--) 然后递 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 洛谷 P4269 / loj 2041 [SHOI2015] 聚变反应炉 题解【贪心】【DP】
树上游戏..二合一? 题目描述 曾经发明了零件组装机的发明家 SHTSC 又公开了他的新发明:聚变反应炉--一种可以产生大量清洁能量的神秘装置. 众所周知,利用核聚变产生的能量有两个难点:一是控制核聚 ...
- SHOI做题记录
LOJ #2027. 「SHOI2016」黑暗前的幻想乡 考虑到每个公司一条边,那就等价于没有任何一家公司没有边. 然后就可以容斥+矩阵树定理,没了. LOJ #2028. 「SHOI2016」随机序 ...
- luogu[2093]零件分组
题目描述 某工厂生产一批棍状零件,每个零件都有一定的长度(Li)和重量(Wi).现在为了加工需要,要将它们分成若干组,使每一组的零件都能排成一个长度和重量都不下降(若i<j,则Li<=Lj ...
- 零件分组_DP
问题 C: 零件分组 时间限制: 1 Sec 内存限制: 64 MB提交: 31 解决: 14[提交][状态][讨论版] 题目描述 某工厂生产一批棍状零件,每个零件都有一定的长度(Li)和重量(W ...
- Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 178 Solved: 70[Submit][Stat ...
- 基于Intranet的零件库管理信息系统设计--part01
好吧,临近毕业的我,毕业设计还没开始做呢.时间不等人,再过两个月就要答辩了,我得开始做我的毕设了,虽然我现在还没能力完全把毕设做出来,但总得先迈出第一步吧.今天先做一小部分. 话不多说,先来看我得毕业 ...
- bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]
4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...
随机推荐
- MyBatis 3 学习
MyBatis是一款优秀的持久化框架,支持定制化SQL.存储过程以及高级映射.MyBatis避免了几乎所有的JDBC代码和手动设置参数以及获得结果集.MyBatis可以使用简单的XML或注解来配置和映 ...
- ES6__数据结构 Map
/* 数据结构 Map */ /* * 字典:是用来存储不重复的key的hash结构.不同于集合(Set)的是,字典使用的是[键,值]的形式来储存数据的. *javaScript 的对象(Object ...
- python-web apache mod_python 模块的安装
安装apache 下载mod_python 编译安装 测试 下载mod_python,下载地址:mod_python 在GitHub 上面, 下载之后:目录结构如下: 安装依赖: #查找可安装的依赖 ...
- Swift--方法(函数)
方法是执行特殊任务的自包含代码块.你可以给方法名字来表示它的功能,而且在需要的时候调用这个名字的方法来执行它的任务. Swift方法的语法表达很灵活,从类似c的没有参数名的方法到oc复杂的带有名字和参 ...
- [Android] 随时拍图像处理部分总结及源码分享
http://blog.csdn.net/eastmount/article/details/45492065#comments [Android] 图像各种处理系列文章合集 http://blog. ...
- HDU 6441 费马大定理+勾股数
#include <bits/stdc++.h> #define pb push_back #define mp make_pair #define fi first #define se ...
- MongoDB学习day07--mongoose入门,数据库增删改查,默认参数,模块化
一.mongoose介绍 Mongoose 是在 node.js 异步环境下对 mongodb 进行便捷操作的对象模型工具. Mongoose 是 NodeJS 的驱动, 不能作为其他语言的驱动. M ...
- spring boot + redis 实现session共享
这次带来的是spring boot + redis 实现session共享的教程. 在spring boot的文档中,告诉我们添加@EnableRedisHttpSession来开启spring se ...
- Meteor表单
在本教程中,我们将告诉你如何使用 Meteor 的表单. 文本输入 首先,我们将创建一个 form 元素中文本输入字段和提交按钮. meteorApp/import/ui/meteorApp.html ...
- iOS设计模式 - (1)概述
近期可自由安排的时间比較多, iOS应用方面, 没什么好点子, 就先放下, 不写了.花点时间学学设计模式. 之后将会写一系列博文, 记录设计模式学习过程. 当然, 由于我自己是搞iOS的, 所以之后设 ...