SGU 106 The equation【扩展欧几里得】
先放一张搞笑图。。
我一直wa2,这位不认识的大神一直wa9。。。这样搞笑的局面持续了一个晚上。。。最后各wa了10发才A。。。
题目链接:
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=111527#problem/X
题意:
给定不定方程,问在给定x,y范围内的解有多少个?
分析:
很明显的扩欧。
但是这题要进行特判。。
- a,b,c小于0.
- a,b,c等于0
特判之后正常扩欧就好。。
问题是我们怎样获得给定区间的解的个数。
通解可以写成:
x=x0+k∗b/gcd
y=y0−k∗a/gcd
我们可以将这两个方程看成关于x0和y0的两个一次函数。
把他们放在同一坐标下,看给定函数值范围内,横坐标为整数的个数就好了。。
向上取整和向下取整处理一下。。
然后从这里开始无限的wa。。。后来看了题解才知道哪里错了。。
- 精度问题,floor和ceil函数参数要用double
- 可以自己实现一个floor和ceil函数,无需将参数全部转化为double。【注意负数的处理】
代码:
#include<iostream>
#include<cmath>
using namespace std;
typedef long long ll;
ll extgcd(ll a, ll b, ll &x, ll &y)
{
ll d = a;
if(b != 0){
d = extgcd(b, a % b, y, x);
y -= (a / b) * x;
}else{
x = 1, y = 0;
}
return d;
}
ll upper(ll a, ll b)
{
if(a <= 0) return a / b;
return (a - 1) / b + 1;
}
ll lower(ll a, ll b)
{
if(a >= 0) return a / b;
return (a + 1) / b - 1;
}
int main (void)
{
ll a, b, c,x1, x2, y1,y2;
cin>>a>>b>>c>>x1>>x2>>y1>>y2;
if(c < 0) c = -c;
else { a = -a; b= -b;}
if(a < 0){a = -a; x1 = -x1; x2 = -x2; swap(x1, x2);}
if(b < 0){b = -b; y1 = -y1; y2 = -y2; swap(y1, y2);}
if(a * b == 0){
if(b){
ll yy = c / b;
if(c % b == 0 && yy >= y1 && yy <= y2) cout<<x2 - x1 + 1<<endl;
else cout<<0<<endl;
}else if(a){
ll xx = c / a;
if(c % a == 0 && xx >= x1 && xx <= x2) cout<<y2 - y1 + 1<<endl;
else cout<<0<<endl;
}else {
if(c != 0) cout<<0<<endl;
else cout<<(x2 - x1 + 1) * (y2 - y1 + 1)<<endl;
}
return 0;
}
ll x0, y0;
ll gcd = extgcd(a, b, x0, y0);
x0 *= c;
y0 *= c;
if(c % gcd != 0) return cout<<0<<endl, 0;
a /= gcd;
b /= gcd;
c /= gcd;
long long bb = min (lower(x2 - x0, b), lower(y0 - y1, a));
long long aa = max (upper(x1 - x0, b), upper(y0 - y2, a));
if (bb < aa) cout<<0<<endl;
else cout<< bb - aa + 1<<endl;
return 0;
}
SGU 106 The equation【扩展欧几里得】的更多相关文章
- SGU 106 The equation 扩展欧几里得好题
扩展欧几里得的应用……见算法竞赛入门经典p.179 注意两点:1.解不等式的时候除负数变号 2.各种特殊情况的判断( a=0 && b=0 && c=0 ) ( a=0 ...
- SGU 106 The Equation 扩展欧几里得应用
Sol:线性不定方程+不等式求解 证明的去搜下别人的证明就好了...数学题. #include <algorithm> #include <cstdio> #include & ...
- SGU 106 The equation 扩展欧几里德
106. The equation time limit per test: 0.25 sec. memory limit per test: 4096 KB There is an equation ...
- SGU 140 扩展欧几里得
题目大意: 给定序列a[] , p , b 希望找到一个序列 x[] , 使a1*x1 + a2*x2 + ... + an*xn = b (mod p) 这里很容易写成 a1*x1 + a2*x2 ...
- poj 2891 扩展欧几里得迭代解同余方程组
Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...
- Codeforces7C 扩展欧几里得
Line Time Limit: 1000MS Memory Limit: 262144KB 64bit IO Format: %I64d & %I64u Submit Status ...
- [codeforces 200 E Tractor College]枚举,扩展欧几里得,三分
题目出自 Codeforces Round #126 (Div. 2) 的E. 题意大致如下:给定a,b,c,s,求三个非负整数x,y,z,满足0<=x<=y<=z,ax+by+cz ...
- Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)
http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...
- UVA 12169 Disgruntled Judge 枚举+扩展欧几里得
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...
- UVA 10090 Marbles 扩展欧几里得
来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...
随机推荐
- fsck和badlocks
fsck可以检查好几种不同的文件系统,fsck只是一个中和程序而已,个别的文件系统检查程序都在/sbin中,可以使用ls -l /sbin/fsck* -A 按照/etc/fstab的内容,将所有的设 ...
- SPICE-HTML5 鼠标指针BUG修复
研究SPICE,找到了他们官方指定的HTML5客户端.下载下来用一下,发现跟网页VNC的水平差不多了.http://www.spice-space.org/page/Html5 服务端直接用QEMU起 ...
- InvocationTargetException异常的深入研究-servlet的setAttribute与getAttribute
在某项目中,前端jsp传入的用户id数据通过session域传入后台servlet进行处理的过程中,无意间出现了InvocationTargetException异常 前端部分代码如下:测试代码,非原 ...
- dirname, basename - 分析路径成员
总览 (SYNOPSIS) #include <libgen.h> char *dirname(char *path); char *basename(char *path); 描述 (D ...
- CAD交互绘制圆(网页版)
CAD绘制图像的过程中,画圆的情况是非常常见的,用户可以在控件视区点取任意一点做为圆心,再动态点取半径绘制圆. 主要用到函数说明: _DMxDrawX::DrawCircle 绘制一个圆.详细说明如下 ...
- java程序在一个电脑上只启动一次,只开一个进程
方案1: 单进程程序可以用端口绑定.程序启动的时候可以尝试看该端口是否已经被占用,如果占用则程序已经启动. 方案2:你可以在java程序中创建一个隐藏文件,程序退出的时候删除这个文件.这样在程序启动的 ...
- 4.关于while循环的基础小练习
1)使用while.if循环输入123456 8910 count = 0 while count < 10: count += 1 if count == 7: print('') else: ...
- Swift语言Storyboard教程:第二部
本文由CocoaChina翻译小组@TurtleFromMars翻译自raywenderlich,原文:Storyboards Tutorial in Swift: Part 2 更新记录:该Stor ...
- 解决普遍pc端公共底部永远在下面框架
<div style="width: 90%;height: 3000px;margin: 0 auto; background: red;"></div> ...
- 5 SQL 复杂查询
5 复杂查询 5-1 视图 究竟视图是什么呢?如果用一句话概述的话,就是“从SQL的角度来看视图就是一张表”.实际上,在SQL语句中并不需要区分哪些是表,哪些是视图. 那么视图和表到底右什么不同呢?区 ...