有向图欧拉回路个数 BEST定理
有向图欧拉回路个数
BZOJ 3659 但是没有这道题了 直接贴一个别人的板子吧
欧拉回路:存在一条路径经过所有的边刚好1次
有向图欧拉回路存在充要条件:①图连通;②对于所有点都满足出度=入度
BEST 定理 https://en.wikipedia.org/wiki/BEST_theorem
定理没仔细看 这个东西感觉不需要搞得非常懂 定理而已。
我只记住了公式 tw(G)表示外向生成树个数,deg表示入度出度都一样 相等的嘛。
当然欧拉回路因为是回路所以存在循环同构,例如下图:
1->2;2->1;1->3;3->1
欧拉回路其实只有1种,但是如果算路径走法的话就会有2种
1 2 1 3 1 和 1 3 1 2 1
这个时候sum还要再乘上x点的出度
https://blog.csdn.net/popoqqq/article/details/77017325
https://blog.csdn.net/Jaihk662/article/details/79338437
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define LL long long
#define mod 1000003
LL Jz[][], out[], jc[] = {};
int main(void)
{
LL ans, A, B, P, temp;
int n, i, j, k, m, x;
for(i=;i<=;i++)
jc[i] = jc[i-]*i%mod;
while(scanf("%d", &n), n!=)
{
memset(Jz, , sizeof(Jz));
for(i=;i<=n;i++)
{
scanf("%d", &m);
out[i] = m;
while(m--)
{
scanf("%d", &x);
Jz[i][x]--, Jz[x][x]++;
}
}
if(n== && out[]==)
{
printf("1\n");
continue;
}
n -= ;
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
Jz[i][j] = (Jz[i+][j+]+mod)%mod;
}
ans = ;
for(i=;i<=n;i++)
{
for(j=i;j<=n;j++)
{
if(Jz[j][i])
break;
}
if(j!=i)
{
ans = mod-ans;
for(k=i;k<=n;k++)
swap(Jz[i][k], Jz[j][k]);
}
for(j=i+;j<=n;j++)
{
A = Jz[i][i], B = Jz[j][i];
while(B)
{
P = A/B, temp = A, A = B, B = temp%B;
ans = mod-ans;
for(k=i;k<=n;k++)
{
Jz[i][k] = (Jz[i][k]-P*Jz[j][k]%mod+mod)%mod;
swap(Jz[i][k], Jz[j][k]);
}
}
}
ans = ans*Jz[i][i]%mod;
}
if(ans==)
{
printf("0\n");
continue;
}
n += ;
for(i=;i<=n;i++)
ans = ans*jc[out[i]-]%mod;
ans = ans*out[]%mod;
printf("%lld\n", ans);
}
return ;
}
/*
3
2 2 3
1 1
1 1
*/
有向图欧拉回路个数 BEST定理的更多相关文章
- bzoj 1515 [POI2006]Lis-The Postman 有向图欧拉回路
LINK:Lis-The Postman 看完题觉得 虽然容易发现是有向图欧拉回路 但是觉得很难解决这个问题. 先分析一下有向图的欧拉回路:充要条件 图中每个点的入度-出度=0且整张图是一个强连通分量 ...
- poj 1386 Play on Words(有向图欧拉回路)
/* 题意:单词拼接,前一个单词的末尾字母和后一个单词的开头字母相同 思路:将一个单词的开头和末尾单词分别做两个点并建一条有向边!然后判断是否存在欧拉回路或者欧拉路 再次强调有向图欧拉路或欧拉回路的判 ...
- POJ 2230 Watchcow(有向图欧拉回路)
Bessie's been appointed the new watch-cow for the farm. Every night, it's her job to walk across the ...
- LOJ-10106(有向图欧拉回路的判断)
题目链接:传送门 思路: (1)将每个单词视为有向路径,单词的起始字母是起始节点,末尾字母是终止节点,然后找由字母建立的有向图 是否是欧拉图或者半欧拉图. (2)先用并查集判断是否连通,再判断入度与出 ...
- 算法笔记_148:有向图欧拉回路求解(Java)
目录 1 问题描述 2 解决方案 1 问题描述 Description A catenym is a pair of words separated by a period such that t ...
- 算法笔记_147:有向图欧拉回路判断应用(Java)
目录 1 问题描述 2 解决方案 1 问题描述 Description In order to make their sons brave, Jiajia and Wind take them t ...
- bzoj 4897 天赋 有向图的矩阵数定理
4894: 天赋 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 104 Solved: 80[Submit][Status][Discuss] De ...
- 行列式&矩阵树定理
行列式: 参考 oi-wiki 定义 对于一个\(n*n\)的矩阵A行列式取值(标量) \(det(A)=|A|=\sum\limits_p(-1)^{\tau(p)}\prod\limits_{i= ...
- Matrix-tree 定理的一些整理
\(Matrix-tree\) 定理用来解决一类生成树计数问题,以下前置知识内容均是先基于无向无权图来介绍的.有关代数余子式的部分不是很明白,如果有错误还请指出-- 部分内容参考至:\(Blog\_1 ...
随机推荐
- Android学习笔记(十九) OkHttp
一.概述 根据我的理解,OkHttp是为了方便访问网络或者获取服务器的资源,而封装出来的一个工具包.通常的使用步骤是:首先初始化一个OkHttpClient对象,然后使用builder模式构造一个Re ...
- Cognos邮件发送
1.打开报表,点击下图的标记 2.设置发送格式收件人 3.设置报表格式 4.设置发送内容
- 2015Java参赛邀请函
[导读]甲骨文公司值Java语言发布20周年之际,携手全国高等级学校计算机教育研究会.教育部高等学校计算机类专业教学指导委员会,共同举办了2015年“甲骨文杯”全国Java程序设计大赛,为二百万名中国 ...
- execl, execlp, execle, execv, execvp - 执行某个文件
总览 (SYNOPSIS) #include <unistd.h> extern char **environ; int execl( const char *path, const ch ...
- codeforces 235 B lets play osu!
cf235B 一道有意思的题.(据说是美少女(伪)计算机科学家出的,hh) 根据题目要求,就是求ni^2的和. 而n^2=n*(n-1)+n; n*(n-1)=C(n,2)*2: 所以∑ai^2=∑a ...
- vue >>> 编译失败问题 loader 待解决( iview vue脚手架生成)
vue >>> 编译失败问题 loader 待解决 用vue iview 脚手架 来一次试试~
- 数据库sql语句limit区别
注意:并非所有的数据库系统都支持 SELECT TOP 语句. MySQL 支持 LIMIT 语句来选取指定的条数数据, Oracle 可以使用 ROWNUM 来选取. SQL Server / MS ...
- jxcel - 好用的Excel与Java对象转换工具
更多精彩博文,欢迎访问我的个人博客 Jxcel简介 Jxcel是一个支持Java对象与Excel(目前仅xlsx.xls)互相转换的工具包. 项目地址:https://github.com/jptan ...
- vue之placeholder中引用字体图标
先说一下问题:在placeholder中想使用字体图标,结果渲染不正确,代码如图 效果如图 在网上get到了解决方法: 在VUE组件中,给placeholder添加图标,需要注意以下几点: 1.不要给 ...
- DirectX9:高级着色语言(HLSL)
一.简介 高级着色语言(High)可以编写顶点着色器和像素着色器,取代固定功能流水线中的部分功能,在图形卡的GPU(Graphics Processing Unit,图形处理单元)中执行 注意:如果图 ...