http://www.sohu.com/a/130379077_468714

本文用一系列「思维导图」由浅入深的总结了「统计学」领域的基础知识,是对之前系列文章做的一次完整的梳理,也是我至今为止所有与统计有关的学习笔记。众所周知,「统计学」是深入理解「机器学习|数据挖掘」的重要基础学科。正所谓磨刀不误砍柴工,对于数理基础薄弱的人,强化一下理论的学习是大有裨益的。普通人难以做到“一次学习”,经典知识总是在一次次回顾后才能有更深入的理解。这也是我选择「思维导图」作为学习工具的原因,发散性思考的模式能帮助迅速回忆起相关的知识。近一个月我对之前陆陆续续学习的统计知识进行了系统性的复习、知识点补充以及思维导图笔记的完善,在这里把完整的笔记和大家分享。本文图片很多,请在wifi下阅读哦。

思维导图说明

  • 默认阅读顺序:从右→左,顺时针方向。

  • 核心重点用「红色星星」标出,需要重点理解,一般是后续学习的基石;「绿色星星」则为需要进一步巩固的内容;「蓝色星星」为高级部分,可以暂时不深入;「红色旗子」表示并列层级,「绿色旗子」为下一层级;「黄色星星」表示需要注意的内容点。

  • 「箭头线」标出了知识之间的联系。

  • 文末附上了分章节整理的链接及百度云盘文件分享,可以根据需要阅读。

  • 笔记只是我学习过程的知识整理,本来是我自己复习时辅以参考的, 难免有缺陷及错误,希望大家能积极帮我批评指正哦。

>>>>

导图概览

>>>>

描述性统计:表格和图形法

>>>>

描述性统计:数值方法

>>>>

概率

>>>>

概率&概率分布

>>>>

抽样分布

>>>>

区间估计

>>>>

假设检验

>>>>

两总体均值之差和比例之差的推断

>>>>

总体方差的统计推断

>>>>

多个比率的比较&独立性检验&拟合优度检验

>>>>

实验设计&方差分析

>>>>

简单线性回归

>>>>

残差分析

>>>>

多元回归

>>>>

回归分析

>>>>

时间序列及预测

>>>>

非参数方法

参考资料

《STATISTICS FOR BUSINESS AND ECONOMICS》12e David R. Anderson etc.

ML-学习提纲1的更多相关文章

  1. [ML学习笔记] XGBoost算法

    [ML学习笔记] XGBoost算法 回归树 决策树可用于分类和回归,分类的结果是离散值(类别),回归的结果是连续值(数值),但本质都是特征(feature)到结果/标签(label)之间的映射. 这 ...

  2. [ML学习笔记] 朴素贝叶斯算法(Naive Bayesian)

    [ML学习笔记] 朴素贝叶斯算法(Naive Bayesian) 贝叶斯公式 \[P(A\mid B) = \frac{P(B\mid A)P(A)}{P(B)}\] 我们把P(A)称为"先 ...

  3. [ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest)

    [ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest) 决策树 决策树算法以树状结构表示数据分类的结果.每个决策点实现一个具有离散输出的测试函数,记为分支 ...

  4. [ML学习笔记] 回归分析(Regression Analysis)

    [ML学习笔记] 回归分析(Regression Analysis) 回归分析:在一系列已知自变量与因变量之间相关关系的基础上,建立变量之间的回归方程,把回归方程作为算法模型,实现对新自变量得出因变量 ...

  5. ML学习分享系列(2)_计算广告小窥[中]

    原作:面包包包包包包 改动:寒小阳 && 龙心尘 时间:2016年2月 出处:http://blog.csdn.net/Breada/article/details/50697030 ...

  6. ML学习分享系列(1)_计算广告小窥[上]

    原作:面包包包包包包 修改:寒小阳 && 龙心尘 时间:2016年1月 出处: http://blog.csdn.net/breada/article/details/50572914 ...

  7. Spark2 ML 学习札记

    摘要: 1.pipeline 模式 1.1相关概念 1.2代码示例 2.特征提取,转换以及特征选择 2.1特征提取 2.2特征转换 2.3特征选择 3.模型选择与参数选择 3.1 交叉验证 3.2 训 ...

  8. core ML学习

    Core ML工具是一个Python包(coremltools),托管在Python包索引(PyPI)上. 从表格中可看出,支持caffe工具. 使用与模型的第三方工具相对应的Core ML转换器转换 ...

  9. ML学习笔记- 神经网络

    神经网络 有的模型可以有多种算法.而有的算法可能可用于多种模型.在神经网络中,对外部环境提供的模式样本进行学习训练,并能存储这种模式,则称为感知器;对外部环境有适应能力,能自动提取外部环境变化特征,则 ...

  10. ML学习笔记(1)

    2019/03/09 16:16 归一化方法: 简单放缩(线性归一化):这种归一化方法比较适用在数值比较集中的情况.这种方法有个缺陷,如果max和min不稳定,很容易使得归一化结果不稳定,使得后续使用 ...

随机推荐

  1. SPOJ:Elegant Permuted Sum(贪心)

    Special Thanks: Jane Alam Jan*At moment in University of Texas at San Antonio - USA You will be give ...

  2. Hadoop 修改源码以及将修改后的源码应用到部署好的Hadoop中

    我的Hadoop版本是hadoop-2.7.3, 我们可以去hadoop官网下载源码hadoop-2.7.3-src,以及编译好的工程文件hadoop-2.7.3, 后者可以直接部署. 前者hadoo ...

  3. A. Bus to Udayland

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  4. 记一次OutOfMemory定位过程

    背景 最近有个项目部署到了AWS,部署方案是ECS+Docker+Java Launch type CPU Units Memory FARGATE 1024 4G 运行后发现程序表现不符合预期--每 ...

  5. k8s-存储卷1-十二

    因为pod是有生命周期的,pod一重启,里面的数据就没有了.所以我们需要数据持久化存储. 在k8s中,存储卷不属于容器,而是属于pod.也就是说同一个pod中的容器可以共享一个存储卷. 存储卷可以是宿 ...

  6. 如何用GO实现一个tail -f功能以及相应的思维发散

    此文已由作者杨望暑授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 背景 在服务端查看log会经常使用到tail -f命令实时跟踪文件变化. 那么问题来了, 如果自己写一个同样 ...

  7. poj3617【贪心】

    题意: 给定长度为N的字符串S,要构造一个长度为N的字符串T串. 从S的头部删除一个字符,加到T的尾部 从S的尾部删除一个字符,加到T的尾部 目标是构造字典序尽可能小的字符串. 思路: 贪心,每次取小 ...

  8. hdoj5301

    题意: 有一个n*m的大矩阵, 其中有一个1*1的不要的位置(x,y), 然后用若干个小矩阵去覆盖大矩阵, 不要的不能被覆盖. 问小矩阵中面积最大的面积最小是多少. 思路: 巨巨先画一个矩形,看看那个 ...

  9. TensorFlow图像预处理完整样例

    参考书 <TensorFlow:实战Google深度学习框架>(第2版) 以下TensorFlow程序完成了从图像片段截取,到图像大小调整再到图像翻转及色彩调整的整个图像预处理过程. #! ...

  10. Swoole和Workerman到底选谁?

    Swoole:面向生产环境的 PHP 异步网络通信引擎 使 PHP 开发人员可以编写高性能的异步并发 TCP.UDP.Unix Socket.HTTP,WebSocket 服务.Swoole 可以广泛 ...