https://www.luogu.org/problem/show?pid=1536

题目描述

某市调查城镇交通状况,得到现有城镇道路统计表。表中列出了每条道路直接连通的城镇。市政府“村村通工程”的目标是使全市任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要相互之间可达即可)。请你计算出最少还需要建设多少条道路?

输入输出格式

输入格式:

每个输入文件包含若干组测试测试数据,每组测试数据的第一行给出两个用空格隔开的正整数,分别是城镇数目N(N<1000)和道路数目M;随后的M行对应M条道路,每行给出一对用空格隔开的正整数,分别是该条道路直接相连的两个城镇的编号。简单起见,城镇从1到N编号。

注意:两个城市间可以有多条道路相通。例如:

3 3 1 2 1 2 2 1 这组数据也是合法的。当N为0时,输入结束。

输出格式:

对于每组数据,对应一行一个整数。表示最少还需要建设的道路数目。

输入输出样例

输入样例#1:

4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0
输出样例#1:

1
0
2
998
#include <iostream>
#include <cstdio> using namespace std; int n,m,x,y,tot,sum,ans;
int fa[],num[];
bool c[]; int find(int x)
{
if(fa[x]!=x)
return fa[x]=find(fa[x]);
return x;
} int main()
{
while((cin>>n)&&n)
{
tot=;
cin>>m;
for(int i=;i<=n;i++)
fa[i]=i;
for(int i=;i<=m;i++)
{
cin>>x>>y;
fa[find(x)]=find(y);
}
for(int i=;i<=n;i++)
if(i==find(i))
tot++;
cout<<tot-<<endl;
} return ;
}

P1536 村村通 洛谷的更多相关文章

  1. 洛谷—— P1536 村村通

    P1536 村村通 题目描述 某市调查城镇交通状况,得到现有城镇道路统计表.表中列出了每条道路直接连通的城镇.市政府“村村通工程”的目标是使全市任何两个城镇间都可以实现交通(但不一定有直接的道路相连, ...

  2. 洛谷 P1536 村村通

    目录 题目 思路 \(Code\) 题目 P1536 村村通 思路 并查集,一开始连通快的数量为\(n\),输入\(m\)条边时如果该边起点和终点不在同一联通块内就合并并让联通块数量减一,最后输出联通 ...

  3. 【洛谷】【最小生成树】P1536 村村通

    [题目描述:] 某市调查城镇交通状况,得到现有城镇道路统计表.表中列出了每条道路直接连通的城镇.市政府"村村通工程"的目标是使全市任何两个城镇间都可以实现交通(但不一定有直接的道路 ...

  4. P1536 村村通(洛谷)并查集

    隔壁的dgdger带我看了看老师的LCA教程,我因为学习数学太累了(就是懒),去水了一下,感觉很简单的样子,于是我也来写(水)个博客吧. 题目描述 某市调查城镇交通状况,得到现有城镇道路统计表.表中列 ...

  5. [LUOGU] P1536 村村通

    题目描述 某市调查城镇交通状况,得到现有城镇道路统计表.表中列出了每条道路直接连通的城镇.市政府"村村通工程"的目标是使全市任何两个城镇间都可以实现交通(但不一定有直接的道路相连, ...

  6. P1536村村通

    这是一个并查集的题,被洛谷评为提高—. 拿到这个题便看出了这是一个裸的并查集,于是就写了一个模板,结果发现连输入都输不进去,一看竟然是多组数据,,然后看到N==0结束,于是便加了一层while.之后提 ...

  7. 洛谷 P1536 村村通(并查集)

    嗯... 题目链接:https://www.luogu.org/problemnew/show/P1536 思路: 这道题可以看出是并查集的思想,然后用一个while嵌套一下,输入一条路的两个端点,就 ...

  8. [洛谷P1536]村村通

    题意:多组数据,当n为0时结束,每组数据表示有n个村子,m条路,求还需要建多少条路,使得所有的村子联通题解:用并查集求出有多少个联通块,然后求解 C++ Code: #include<cstdi ...

  9. P1536 村村通

    原题链接 https://www.luogu.org/problemnew/show/P1536 昨天刚学的并查集,今天正好练习一下,于是就找到了这个题 看起来好像很简单,尤其是你明白了思路之后,完全 ...

随机推荐

  1. [BZOJ4899]:记忆的轮廓(概率DP)

    题目传送门 题目描述: 通往贤者之塔的路上,有许多的危机. 我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增, 在[1,n]中,一共有n个节点.我 ...

  2. web框架 http协议

    http 协议是超文本传输协议,位于osi七层的应用层,协议规定的就是请求与响应双方的一个消息格式,请求(请求行,请求头,空行,请求数据,请求行--请求方式URL协议版本\r\n请求头--user-a ...

  3. CVE-2010-3333

    环境 windows xp sp3 office 2003 sp0 windbg ollydbg vmware 12.0 0x00 RTF格式 RTF是Rich TextFormat的缩写,意即富文本 ...

  4. Watch Before You Feel Pressure

    Today's assembly is about the start of a journey. 今天的大会是一个旅程的开始. The start of the rest of your lives ...

  5. vba练习资料

    链接:https://pan.baidu.com/s/1E0e58rZ_3QCCorWNM-ehSA 提取码:jluf

  6. bzoj5138 [Usaco2017 Dec]Push a Box

    题目描述: bz luogu 题解: 暴力可以记录$AB$位置转移,这个时候状态是$n^4$的,无法接受. 考虑只记录$A$在$B$旁边时的状态,这个时候状态时$n^2$的. 所以说转移有两种,一种是 ...

  7. iOS使用Reveal分析他人app界面

    本文转自http://blog.csdn.net/cuibo1123/article/details/45694657 安装: 首先前往 http://revealapp.com/download/  ...

  8. LeetCode(39) Combination Sum

    题目 Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C w ...

  9. CentOS 7.0:搭建SVN服务器

    1. 通过 yum install subversion来安装 2. 提示已经安装.查看svn版本 第二步: 创建svn版本库 第三步: 配置svn信息 2. 配置权限配置文件authz 3. 配置用 ...

  10. 深入浅出Oracle:DBA入门、进阶与诊断案例(读书笔记2)

    第5章  Buffer Cache与Shared Pool原理 5.1 Buffer Cache原理 Buffer Cache是Oracle SGA中的一个重要部分,通常的数据访问和修改都需要通过Bu ...