「CTSC2016」单调上升路径

解题思路:根据提示可以得到答案的下界是 \(n - 1\) ,然后打表发现这个下界好像一定可以取到.

事实上考虑 \(n\) 个点完全图的边数是 \(\frac{n(n-1)}{2}\), 如果 \(n\) 是偶数,那么可以把边成 \(n-1\) 组,每一组 \(\frac{n}{2}\) 条边,并且每组的边都不在端点相交,如果从小到大安排上边权,显然每一组只能走一条边,答案是 \(n-1\) .

构造不在端点相交可以单独拿出一个点 \(x\) 放在中间,其他点围成一圈,每次拿 \(x\) 和一个其它点连边,剩下的点就可以一一对应过去,这样就能构造出来了.

/*program by mangoyang*/
#include <bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int ch = 0, f = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
int s[505][505], cnt, n;
int main(){
read(n);
for(int i = 1, x, y; i < n; i++){
s[i][n] = ++cnt, x = i, y = i;
for(int j = 1; j <= (n - 1) / 2; j++){
x = x == 1 ? n - 1 : x - 1;
y = y == n - 1 ? 1 : y + 1;
s[Min(x, y)][Max(x, y)] = ++cnt;
}
}
for(int i = 1; i <= n; i++)
for(int j = i + 1; j <= n; j++) printf("%d ", s[i][j]);
}

「CTSC2016」单调上升路径的更多相关文章

  1. loj#2574. 「TJOI2018」智力竞赛 (路径覆盖)

    目录 题目链接 题解 代码 题目链接 loj#2574. 「TJOI2018」智力竞赛 题解 就是求可重路径覆盖之后最大化剩余点的最小权值 二分答案后就是一个可重复路径覆盖 处理出可达点做二分图匹配就 ...

  2. UOJ#201. 【CTSC2016】单调上升路径 构造

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ201.html 题解 首先把题目里面的提示抄过来: 结论:假设带权无向图 G 有 100 个节点 1000 ...

  3. @loj - 2987@ 「CTSC2016」时空旅行

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 2045 年,人类的技术突飞猛进,已经找到了进行时空旅行的方法. ...

  4. 「FJ2014集训」采药人的路径

    啦啦啦 来写一篇题解 洛谷链接: P4930 「FJ2014集训」采药人的路径 统计路径?嗯往点分治上想. 把0和1转化为-1和1,求和完dis为0的路径就是阴阳平衡的路径了. 如果题目没有限制要有中 ...

  5. 【思维题 单调栈】loj#2430. 「POI2014」沙拉餐厅 Salad Bar

    t老师的做法好神…… 题目描述 桌面上有 n 个水果,分别是苹果和橘子.Bytea需要从水果中选择连续的一个区间,并从左到右或从右到左拿水果,且过程中橘子的数量必须始终不小于苹果的数量.求最长的区间大 ...

  6. P4930「FJ2014集训」采药人的路径

    题目:P4930「FJ2014集训」采药人的路径 思路: 这篇不算题解,是让自己复习的,什么都没说清楚. 很久没有写点分治了,以前为了赶课件学的太急,板子都没打对就照着题解写题,导致学得很不扎实. 这 ...

  7. [CTSC2016]单调上升路径

    题目:UOJ#201. 题目大意:给定n个点(n是偶数)的完全图,现在要你给每条边确定一个权值(互不相等),使得最长的单调上升路径最短.现在要你输出边的权值. 一条路径被称为单调上升的,如果沿着它走时 ...

  8. 一个「学渣」从零开始的Web前端自学之路

    从 13 年专科毕业开始,一路跌跌撞撞走了很多弯路,做过餐厅服务员,进过工厂干过流水线,做过客服,干过电话销售可以说经历相当的“丰富”. 最后的机缘巧合下,走上了前端开发之路,作为一个非计算机专业且低 ...

  9. 「WC2010」重建计划(长链剖分/点分治)

    「WC2010」重建计划(长链剖分/点分治) 题目描述 有一棵大小为 \(n\) 的树,给定 \(L, R\) ,要求找到一条长度在 \([L, R]\) 的路径,并且路径上边权的平均值最大 \(1 ...

随机推荐

  1. 【LibreOJ】#6259. 「CodePlus 2017 12 月赛」白金元首与独舞

    [题目]给定n行m列的矩阵,每个位置有一个指示方向(上下左右)或没有指示方向(任意选择),要求给未定格(没有指示方向的位置)确定方向,使得从任意一个开始走都可以都出矩阵,求方案数.n,m<=20 ...

  2. yii2 自动登录解读

    今日遇到一个需要将当前用户,全部登出系统(YII2框架制作)重新登录的需求 仔细回忆一遍,Yii2的登录流程,竟然有些不太明白,于是下午空闲时 重新看了下Yii2的用户登录源码 文件位于YII2项目下 ...

  3. 常见的bug

    常见bug 一. Android系统功能测试设计的测试用例: a.对所测APP划分模块 b.详细列出每个模块的功能点(使用Xmind绘制功能图) c.使用等价类划分.边界值.场景法等对各功能点编写测试 ...

  4. perl6正则 5: [ ] / | / ||

    也就是可以把多种要匹配的写进[ ] 中, 第种用 | 分开就行了. | 与 || 有差别 |的话, 当匹配位置 相同时, 会取最长的, 而 || , 当前面的匹配成功, 后面的就不会再去匹配. / / ...

  5. select count(*) from user注入

    先来看一条sql语句: mysql; +------+----------+----------+------------+ | id | username | password | flag | + ...

  6. Deploy Openstack with RDO and Change VNC console to Spice

    Deploy Openstack with RDO and Change VNC console to Spice host os: centOS 7 server config network an ...

  7. 短信API——短信验证码

    简介 短信服务(Short Message Service.SMS)是指通过调用短信发送API,将指定短信内容发送给指定手机用户. 阿里云短信服务 阿里云短信服务产品介绍:https://www.al ...

  8. What I Learned as a Junior Developer Writing Tests for Legacy Code(转载)

    I go to the gym and lift weights because I like the feeling of getting stronger and better. Two mont ...

  9. Mybatis基础及入门案例

    这几天正在对SSM框架的知识进行一个回顾加深,有很多东西学的囫囵吞枣,所以利用一些时间进一步的学习.首先大概了解一下mybatis的使用,再通过一个案例来学习它. 什么是MyBatis Mybatis ...

  10. mongo备份&恢复

    1.备份数据: $mongodump -h 127.0.0.1 -u traderaccount -p kasumi -d traderaccount -o "/traderaccount& ...