4555: [Tjoi2016&Heoi2016]求和

Time Limit: 40 Sec  Memory Limit: 128 MB
Submit: 315  Solved: 252

Description

在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心。

现在他想计算这样一个函数的值:
S(i, j)表示第二类斯特林数,递推公式为:
S(i, j) = j ∗ S(i − 1, j) + S(i − 1, j − 1), 1 <= j <= i − 1。
边界条件为:S(i, i) = 1(0 <= i), S(i, 0) = 0(1 <= i)
你能帮帮他吗?

Input

输入只有一个正整数

Output

输出f(n)。由于结果会很大,输出f(n)对998244353(7 × 17 × 223 + 1)取模的结果即可。1 ≤ n ≤ 100000

Sample Input

3

Sample Output

87

HINT

Source

【分析】

  额。。要用第二类斯特林数的展开式?

  表示并不会。于是看题解。ORZ。。ATP大神

  

  带进去,注意不用管j从1到i,因为j从1到n的话后面都是0,没有关系的。

  最后化成

  

  一脸卷积么?个人认为还不是很能看出来。

  但是,就是!

  

  h用NTT求,然后求和即可。

  再次ORZ。。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 500010
#define LL long long
const int Mod=;
const int G=; int a[Maxn],b[Maxn],fac[Maxn]; int qpow(int x,int b)
{
int ans=;
while(b)
{
if(b&) ans=1LL*ans*x%Mod;
x=1LL*x*x%Mod;
b>>=;
}
return ans;
} int nn,R[Maxn],inv;
void ntt(int *s,int f)
{
for(int i=;i<nn;i++) if(i<R[i]) swap(s[i],s[R[i]]);
for(int i=;i<nn;i<<=)
{
int wn=qpow(G,(Mod-)/(i<<));
for(int j=;j<nn;j+=(i<<))
{
int w=;
for(int k=;k<i;k++)
{
int x=s[j+k],y=1LL*w*s[j+k+i]%Mod;
s[j+k]=(x+y)%Mod;s[j+k+i]=((x-y)%Mod+Mod)%Mod;
w=1LL*w*wn%Mod;
}
}
}
if(f==-)
{
reverse(s+,s+nn);
for(int i=;i<=nn;i++) s[i]=1LL*s[i]*inv%Mod;
}
} int main()
{
int n;
scanf("%d",&n);
fac[]=;for(int i=;i<=n;i++) fac[i]=1LL*i*fac[i-]%Mod;
for(int i=;i<=n;i++)
{
a[i]=qpow(fac[i],Mod-);
if(i&) a[i]=Mod-a[i];
b[i]=(-qpow(i,n+))%Mod;
b[i]=1LL*b[i]*qpow(-i,Mod-)%Mod;
b[i]=1LL*b[i]*qpow(fac[i],Mod-)%Mod;
b[i]=(b[i]%Mod+Mod)%Mod;
}
nn=;int ll=;
while(nn<=*n) nn<<=,ll++;
for(int i=;i<=nn;i++) R[i]=(R[i>>]>>)|((i&)<<(ll-));
inv=qpow(nn,Mod-);
b[]=n+;
ntt(a,);ntt(b,);
for(int i=;i<=nn;i++) a[i]=1LL*a[i]*b[i]%Mod;
ntt(a,-);
int ans=;
for(int i=;i<=n;i++) ans=(ans+1LL*a[i]*qpow(,i)%Mod*fac[i])%Mod;
printf("%d\n",ans);
return ;
}

代码只需在FFT基础上修改一点点即可。

对于原根,因为你读题时就知道模数,你可以自己打个暴力求一下。具体方法在FFT和NTT总结中有说。

然后你直接赋值原根G的值就好了。

2017-04-14 15:10:42

  

【BZOJ 4555】 4555: [Tjoi2016&Heoi2016]求和 (NTT)的更多相关文章

  1. bzoj 4555 [Tjoi2016&Heoi2016]求和 NTT 第二类斯特林数 等比数列求和优化

    [Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 679  Solved: 534[Submit][S ...

  2. BZOJ 4555: [Tjoi2016&Heoi2016]求和 (NTT + 第二类斯特林数)

    题意 给你一个数 \(n\) 求这样一个函数的值 : \[\displaystyle f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i} \begin{Bmatrix} i \\ j ...

  3. bzoj 4555 [Tjoi2016&Heoi2016]求和——NTT+第二类斯特林数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 第二类斯特林数展开式: \( S(i,j) = \frac{1}{j!} \sum\l ...

  4. 【BZOJ 4555】[Tjoi2016&Heoi2016]求和 多项式求逆/NTT+第二类斯特林数

    出处0.0用到第二类斯特林数的性质,做法好像很多,我打的是直接ntt,由第二类斯特林数的容斥公式可以推出,我们可以对于每一个i,来一次ntt求出他与所有j组成的第二类斯特林数的值,这个时候我们是O(n ...

  5. 【bzoj4555】[Tjoi2016&Heoi2016]求和 NTT

    题目描述 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) ...

  6. 【BZOJ】4555: [Tjoi2016&Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT

    [题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016& ...

  7. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  8. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  9. [BZOJ4555][TJOI2016&HEOI2016]求和(分治FFT)

    4555: [Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 525  Solved: 418[Sub ...

随机推荐

  1. 关于static关键字

    static用于修饰成员(成员变量,成员函数),不能修饰局部变量被修饰的变量和函数是静态的,可被多个对象共享,节省内存可以直接被类名调用++++++++++++++++++++++++++++++++ ...

  2. parseInt

    本文地址:http://www.cnblogs.com/veinyin/p/7647863.html 先来个简单的 console.log(parseFloat("8")); 嗯, ...

  3. 【洛谷 P4166】 [SCOI2007]最大土地面积(凸包,旋转卡壳)

    题目链接 又调了我两个多小时巨亏 直接\(O(n^4)\)枚举4个点显然不行. 数据范围提示我们需要一个\(O(n^2)\)的算法. 于是\(O(n^2)\)枚举对角线,然后在这两个点两边各找一个点使 ...

  4. E - Travel Cards CodeForces - 847K (思维)

    题目链接:https://cn.vjudge.net/contest/272855#problem/E 题目大意:给你n,a,b,k,f.n代表有n次旅行计划,然后a代表一次单程旅行的车费,b代表从下 ...

  5. wordpress 模板制作之一

    WP模板工作原理图:

  6. 第5堂音频课:发音&词串&自学方法示范

    1. 发音怎么练习 我讲解的第5-6节发音课,就像一个有用教练,教你的划水姿势,你学了以后,在床上趴着练练蹬腿,然后,要立刻跳下水去游泳,也就是说,你要去听英语: 请你听一段可可宝贝APP的绘本故事, ...

  7. perl6 单线程破解phpmyadmin脚本

    use HTTP::UserAgent; my $ua = HTTP::UserAgent.new; my $url = 'http://localhost/phpMyAdmin/index.php' ...

  8. flask插件系列之SQLAlchemy实用技巧

    下面记录一下SQLAlchemy使用的技巧. 在多模块下定义models 如果由多个蓝图下读定义了model模块,在初始化的时候需要加载到上下文中. 当使用flask_Migrate迁移数据库的时候, ...

  9. ssh登录时较慢的解决方法

    ssh在登录的时候,通常都会经过DNS的反向解析,过程为: IP --> (反向DNS) --> hostname --> (DNS) --> IP 然后匹配开头申请的和最后得 ...

  10. django入门--django-blog-zinnia搭建个人博客

    1.安装python 选择合适python2.7及以上版本安装https://www.python.org/downloads/ 2.建立虚拟环境 这不是必须的,但是建议使用,为每个项目单独引入依赖, ...