Matrix

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2650    Accepted Submission(s): 1411

Problem Description
Yifenfei very like play a number game in the n*n Matrix. A positive integer number is put in each area of the Matrix.
Every time yifenfei should to do is that choose a detour which frome the top left point to the bottom right point and than back to the top left point with the maximal values of sum integers that area of Matrix yifenfei choose. But from the top to the bottom can only choose right and down, from the bottom to the top can only choose left and up. And yifenfei can not pass the same area of the Matrix except the start and end. 
 
Input
The input contains multiple test cases.
Each case first line given the integer n (2<n<30) 
Than n lines,each line include n positive integers.(<100)
 
Output
For each test case output the maximal values yifenfei can get.
 
Sample Input
2
10 3
5 10
3
10 3 3
2 5 3
6 7 10
5
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9
 
Sample Output
28
46
80
 
Author
yifenfei
 
Source
 
Recommend
yifenfei
//费用流模板题,因为题目中的表述就是一个网络流模型,拆点建图,没点只经过一次,起点终点容量为2,
//其他点容量为1,要求最大费用费用为负权值,套模板。起点和终点经历了两次,最后要减去。
/****************最小费用最大流模板,白书363页*******************************/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
const int maxn=30*30*2+5,inf=0x7fffffff;//本体拆点,数组多开两倍
struct Edge
{
int from,to,cap,flow,cost;
Edge(int u,int v,int c,int f,int cs):from(u),to(v),cap(c),flow(f),cost(cs){}
};
struct MCMF
{
int n,m,s,t;
vector<Edge>edges;
vector<int>g[maxn];
int inq[maxn],d[maxn],p[maxn],a[maxn];
void init(int n)
{
this->n=n;
for(int i=0;i<n;i++) g[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int cap,int cost)
{
edges.push_back((Edge){from,to,cap,0,cost});
edges.push_back((Edge){to,from,0,0,-cost});
m=edges.size();
g[from].push_back(m-2);
g[to].push_back(m-1);
}
bool BellmanFord(int s,int t,int &flow,int &cost)
{
for(int i=0;i<n;i++) d[i]=inf;
memset(inq,0,sizeof(inq));
d[s]=0;inq[s]=1;p[s]=0;a[s]=inf;
queue<int>q;
q.push(s);
while(!q.empty()){
int u=q.front();q.pop();
inq[u]=0;
for(int i=0;i<(int)g[u].size();i++){
Edge &e=edges[g[u][i]];
if(e.cap>e.flow&&d[e.to]>d[u]+e.cost){
d[e.to]=d[u]+e.cost;
p[e.to]=g[u][i];
a[e.to]=min(a[u],e.cap-e.flow);
if(!inq[e.to]) {q.push(e.to);inq[e.to]=1;}
}
}
}
if(d[t]==inf) return false;
flow+=a[t];
cost+=d[t]*a[t];
int u=t;
while(u!=s){
edges[p[u]].flow+=a[t];
edges[p[u]^1].flow-=a[t];
u=edges[p[u]].from;
}
return true;
}
int Mincost(int s,int t)
{
int flow=0,cost=0;
while(BellmanFord(s,t,flow,cost));
return cost;//返回最小费用,flow存最大流
}
}MC;
/**********************************************************************************/
int main()
{
int n,mp[35][35];
while(scanf("%d",&n)==1){
int s=0,t=n*n*2+1;
MC.init(n*n*2+2);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&mp[i][j]);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
int id=(i-1)*n+j;
if(id==1){
MC.AddEdge(id,id+n*n,2,-mp[i][j]);
MC.AddEdge(s,id,2,0);
}
else if(id==n*n){
MC.AddEdge(id,id+n*n,2,-mp[i][j]);
MC.AddEdge(id+n*n,t,2,0);
}
else MC.AddEdge(id,id+n*n,1,-mp[i][j]);
if(i<n){
int nid=id+n;
MC.AddEdge(id+n*n,nid,1,0);
}
if(j<n){
int nid=id+1;
MC.AddEdge(id+n*n,nid,1,0);
}
}
}
int ans=-(MC.Mincost(0,n*n*2+1)+mp[1][1]+mp[n][n]);
printf("%d\n",ans);
}
return 0;
}

  

Matrix Again

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
Total Submission(s): 4255    Accepted Submission(s): 1233

Problem Description
Starvae very like play a number game in the n*n Matrix. A positive integer number is put in each area of the Matrix.
Every time starvae should to do is that choose a detour which from the top left point to the bottom right point and than back to the top left point with the maximal values of sum integers that area of Matrix starvae choose. But from the top to the bottom can only choose right and down, from the bottom to the top can only choose left and up. And starvae can not pass the same area of the Matrix except the start and end..
Do you know why call this problem as “Matrix Again”? AS it is like the problem 2686 of HDU.
 
Input
The input contains multiple test cases.
Each case first line given the integer n (2<=n<=600) 
Then n lines, each line include n positive integers. (<100)
 
Output
For each test case output the maximal values starvae can get.
 
Sample Input
2 10 3 5 10 3 10 3 3 2 5 3 6 7 10 5 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8 5 6 7 8 9
 
Sample Output
28 46 80
 
Author
Starvae
 
Source
//和HDU2686一样,只是数据变大了,上一个模板会超内存,这个板不会。
/***********************最小费用最大流模板2*************************/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int maxn=610*610*2+2;
const int maxm=4*maxn;//!边数要够
const int inf=0x7fffffff;
struct Edge
{
int to,next,cap,flow,cost;
}edges[maxm];
int head[maxn],tol,pre[maxn],dis[maxn];
bool vis[maxn];
int N;
void init(int n)
{
N=n;
tol=0;
memset(head,-1,sizeof(head));
}
void AddEdge(int u,int v,int cap,int cost)
{
edges[tol].to=v;
edges[tol].cap=cap;
edges[tol].cost=cost;
edges[tol].flow=0;
edges[tol].next=head[u];
head[u]=tol++;
edges[tol].to=u;
edges[tol].cap=0;
edges[tol].cost=-cost;
edges[tol].flow=0;
edges[tol].next=head[v];
head[v]=tol++;
}
bool spfa(int s,int t)
{
queue<int>q;
for(int i=0;i<=N;i++){
dis[i]=inf;
vis[i]=0;
pre[i]=-1;
}
dis[s]=0;
vis[s]=1;
q.push(s);
while(!q.empty()){
int u=q.front();q.pop();
vis[u]=0;
for(int i=head[u];i!=-1;i=edges[i].next){
int v=edges[i].to;
if(edges[i].cap>edges[i].flow&&dis[v]>dis[u]+edges[i].cost){
dis[v]=dis[u]+edges[i].cost;
pre[v]=i;
if(!vis[v]) {vis[v]=1;q.push(v);}
}
}
}
if(pre[t]==-1) return 0;
return 1;
}
int MinCostFlow(int s,int t)
{
int flow=0,cost=0;
while(spfa(s,t)){
int Min=inf;
for(int i=pre[t];i!=-1;i=pre[edges[i^1].to])
Min=min(Min,edges[i].cap-edges[i].flow);
for(int i=pre[t];i!=-1;i=pre[edges[i^1].to]){
edges[i].flow+=Min;
edges[i^1].flow-=Min;
cost+=edges[i].cost*Min;
}
flow+=Min;
}
return cost;//返回最小费用,flow存最大流
}
/*********************************************************************/
int main()
{
int n,mp[605][605];
while(scanf("%d",&n)==1){
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++) scanf("%d",&mp[i][j]);
int s=0,t=n*n*2+1;
init(n*n*2+2);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
int id=(i-1)*n+j;
if(id==1){
AddEdge(id,id+n*n,2,-mp[i][j]);
AddEdge(s,id,2,0);
}
else if(id==n*n){
AddEdge(id,id+n*n,2,-mp[i][j]);
AddEdge(id+n*n,t,2,0);
}
else AddEdge(id,id+n*n,1,-mp[i][j]);
if(i<n) AddEdge(id+n*n,id+n,1,0);
if(j<n) AddEdge(id+n*n,id+1,1,0);
}
}
int ans=-(MinCostFlow(s,t)+mp[1][1]+mp[n][n]);
printf("%d\n",ans);
}
return 0;
}

  

给出代码供以后参考学习

多线程DP的更多相关文章

  1. Matrix(多线程dp)

    Matrix Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  2. HDU 2686 Matrix 多线程dp

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2686 思路:多线程dp,参考51Nod 1084:http://www.51nod.com/onlin ...

  3. codevs1169, 51nod1084(多线程dp)

    先说下codevs1169吧, 题目链接: http://codevs.cn/problem/1169/ 题意: 中文题诶~ 思路: 多线程 dp 用 dp[i][j][k][l] 存储一个人在 (i ...

  4. 51Nod 1084 矩阵取数问题 V2 —— 最小费用最大流 or 多线程DP

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1084 1084 矩阵取数问题 V2  基准时间限制:2 秒 空 ...

  5. 8786:方格取数 (多线程dp)

    [题目描述] 设有N*N的方格图(N<=10),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.某人从图的左上角的A 点出发,可以向下行走,也可以向右走,直到到达右下角的B点.在走 ...

  6. TYVJ 1011 NOIP 2008&&NOIP 2000 传纸条&&方格取数 Label:多线程dp

    做题记录:2016-08-15 15:47:07 背景 NOIP2008复赛提高组第三题 描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行 ...

  7. (多线程dp)Matrix (hdu 2686)

    http://acm.hdu.edu.cn/showproblem.php?pid=2686     Problem Description Yifenfei very like play a num ...

  8. NOIP 2008 传纸条 NOIP 2000 方块取数 多线程DP

    思路都是一样,建立一个四维dp然后跑一发就完了 当然,也可以像我这么帅的人,降成三维再傻傻的跑一发啦啦啦~ #include<iostream> #include<stdio.h&g ...

  9. 51nod 1503 猪和回文(多线程DP)

    虚拟两个点,一个从左上角开始走,一个从右下角开始走,定义dp[i][j][k]表示走了i步后,第一个点横向走了j步,第二个点横向走了k步后形成的回文方法种数. 转移方程显然可得,然后滚动数组搞一搞. ...

  10. 51nod 1503 多线程dp

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1503 1503 猪和回文 题目来源: CodeForces 基准时间限制 ...

随机推荐

  1. Linux命令详解1--文件和目录管理之文件查找和比较

    1. 文件查找 1.1 strings命令 ------- 在对象文件或二进制文件中查找可打印的字符串.字符串是4个或更多可打印的任意序列,以换行或空字符结束. strings命令对识别随机对象文件很 ...

  2. (转)libvirt API的基本概念

    本文摘自:http://blog.sina.com.cn/s/blog_da4487c40102v31i.html libvirt对象 libvirt的对象向外展现了虚拟化环境的所有资源.libvir ...

  3. Spark之 使用SparkSql操作Hive的Scala程序实现

    依赖 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-hive_2 ...

  4. Renderer.materials 和sharedMaterials一些用法上的区别

    Not allowed to access Renderer.materials on prefab object. Use Renderer.sharedMaterials insteadUnity ...

  5. selenium+jenkins网页自动化测试的构建

    jenkins+selenium可以做到对web自动化的持续集成. Jenkins的基本操作: 一.新建视图及job 新建视图: 新建job: 可以选择构建一个自由风格的软件项目或者复制已有的item ...

  6. Docker03 Docker基础知识、Docker实战

    1 Docker基础知识 1.1 什么是Docker Docker是一个可以装应用的容器,就像杯子可以装水.书包可以装书一样:docker官网 Docker是Docker公司开发的,并开源到GitHu ...

  7. office excel 2010 破解版下载地址

    office excel 2010 破解版下载地址  http://www.xitongzhijia.net/soft/24189.html

  8. Openssl pkey命令

    一.简介 pkey是一个公钥或私钥的处理命令,可以用于打印和转换不同的表单和组件 二.语法 openssl pkey [-inform PEM|DER] [-outform PE|DER] [-in ...

  9. CF 662C Binary Table

    用FWT优化计算. 首先发现行数很小,想到一个暴力的方法,就是以一个二进制位$0$表示这一行不翻转而二进制位$1$表示这一行翻转,然后$2^n$枚举出所有行的翻转情况,再$O(m)$计算所有的结果. ...

  10. wsl命令行

    参考: https://docs.microsoft.com/en-us/windows/wsl/about 查看已安装 wslconfig /l /all 重装 wslconfig /u debia ...