题解【bzoj2301 [HAOI2011]Problem b】
Description
求有多少个数对 \((x,y)\) ,满足$ a \leq x \leq b$ ,\(c \leq y \leq d\) ,且 \(\gcd(x,y) = k\),\(\gcd(x,y)\)函数为 \(x\) 和 \(y\) 的最大公约数。多组询问。\(a,b,c,d,k,T \leq 50000\)
Solution
莫比乌斯反演的经典题目QAQ
首相将问题转化成前缀上的问题。即需要求出 有多少个数对 \((x,y)\) ,满足$ 1 \leq x \leq a$ ,\(1 \leq y \leq b\) ,且 \(\gcd(x,y) = k\)。如果能够快速算出来这个,容斥一下就可以求出最后答案。
考虑这个怎么求,开始推式子。这个东西显然就是
\]
把 \(k\) 提出来可得
\]
然后把后面这个 \([\gcd(i,j)=1]\) 反演掉,得
\]
把 \(d\) 搞到前面来,得到
\]
好了,这个玩意可以预处理出 \(\mu\) 得前缀和然后分块完事。
Code
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 50000;
int k, cnt, p[N + 50], mu[N + 50], flag[N + 50], sum[N + 50];
inline void prework() {
flag[1] = mu[1] = 1;
for(int i = 2; i <= N; i++) {
if(!flag[i]) {
p[++cnt] = i; mu[i] = -1;
} for(int j = 1; j <= cnt && i * p[j] <= N; j++) {
flag[i * p[j]] = 1;
if(i % p[j] == 0) {
mu[i * p[j]] = 0; break;
} mu[i * p[j]] = mu[i] * -1;
}
} for(int i = 1; i <= N; i++) sum[i] = sum[i - 1] + mu[i];
}
inline ll calc(int n, int m) {
if(n > m) swap(n, m); ll ret = 0;
for(int l = 1, r; l <= n / k; l = r + 1) {
r = min(n / (n / l), m / (m / l));
ret += 1ll * (n / (l * k)) * (m / (l * k)) * (sum[r] - sum[l - 1]);
} return ret;
}
int main() {
int T; prework();
scanf("%d", &T);
while(T--) {
int a, b, c, d;
scanf("%d %d %d %d %d", &a, &b, &c, &d, &k);
printf("%lld\n", calc(a - 1, c - 1) - calc(b, c - 1) - calc(d, a - 1) + calc(b, d));
}
return 0;
}
题解【bzoj2301 [HAOI2011]Problem b】的更多相关文章
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- BZOJ2301 [HAOI2011]Problem b
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- Bzoj-2301 [HAOI2011]Problem b 容斥原理,Mobius反演,分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 题意:多次询问,求有多少对数满足 gcd(x,y)=k, a<=x<=b ...
- 【数论】【莫比乌斯反演】【线性筛】bzoj2301 [HAOI2011]Problem b
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 100%的数据满足:1≤n≤50000,1≤a≤b ...
- [bzoj2301][HAOI2011]Problem B —— 莫比乌斯反演+容斥原理
题意 给定a, b, c, d, k,求出: \[\sum_{i=a}^b\sum_{j=c}^d[gcd(i, j) = k]\] 题解 为方便表述,我们设 \[calc(\alpha, \beta ...
- bzoj2301 [HAOI2011]Problem b【莫比乌斯反演 分块】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减 ...
- BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演
分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...
- [bzoj2301: [HAOI2011]Problem b] 乞讨
</pre><pre code_snippet_id="507886" snippet_file_name="blog_20141104_2_53831 ...
- bzoj2301: [HAOI2011]Problem b懵逼乌斯反演
属于结果的和好求但是结果不好求的题 (轻易能得到以k的倍数为最大公约数的对数,但是不好直接求k) 所以一波反演结束 其实反演的时候完全没有反演的感觉,就是不停地恒等变形 算是懵逼乌斯反演最简单的例题 ...
随机推荐
- Numpy入门笔记第二天
# 数组的组合 import numpy as np arr1 = np.arange(5) arr2 = np.arange(3) print arr1 print arr2 [0 1 2 3 4] ...
- Paper Reading - Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation ( CVPR 2015 )
Link of the Paper: https://ieeexplore.ieee.org/document/7298856/ A Correlative Paper: Learning a Rec ...
- centos下安装升级python到python3.5
本文摘抄自:https://www.cnblogs.com/edward2013/p/5289056.html 请支持原版 CentOS7安装Python3.5 2. 安装Python的依赖包 ...
- 20个常用Linux性能监控工具/命令
20个常用Linux性能监控工具/命令 对于 Linux/Unix 系统管理员非常有用的并且最常用的20个命令行系统监视工具.这些命令可以在所有版本的 Linux 下使用去监控和查找系统性能的实际原因 ...
- 进阶系列(9)——linq
一.揭开linq的神秘面纱(一)概述 LINQ的全称是Language Integrated Query,中文译成“语言集成查询”.LINQ作为一种查询技术,首先要解决数据源的封装,大致使用了三大组 ...
- HDU 5206 Four Inages Strategy 水题
题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5206 bc(中文):http://bestcoder.hdu.edu.cn/contests ...
- caffe神经网络模型的绘图
Python/draw_net.py, 这个文件,就是用来绘制网络模型的.也就是将网络模型由prototxt变成一张图片. 1.安装GraphViz # sudo apt-get install Gr ...
- Java对象创建过程补遗
一.static修饰的东东是属于这个类的,是所有的该类的实例共享的,因此它们的初始化先于实例对象的初始化. 二.Java中没有静态构造方法,但是有静态代码块.当类中同时存在静态代码块和静态成员变量声明 ...
- 此时本机的BootLoader程序坏了,也就是说grub第一阶段坏掉了,该如何修复
方法一:直接安装grub (1)先把MBR拷贝一份 dd if=/dev/sda of=/tmp/mbr count=1 bs=512 (2)然后再破坏 dd if=/dev/zero of=/d ...
- APDU命令与响应格式【转】
本文转载自:http://map.im/apduintroduce 命令格式 APDU命令由命令头和命令体组成: CLA | INS | P1 | P2 | Lc | DATA | Le命令头: CL ...