https://www.luogu.org/problemnew/show/CF859C

Description

有一个长度为\(n\)的序列,Alice和Bob在玩游戏。Bob先手掌握决策权。

他们从左向右扫整个序列,在任意时刻,拥有决策权的人有如下两个选择:

将当前的数加到自己的得分中,并将决策权给对方,对方将获得下一个数的决策权

将当前的数加到对方的得分中,并将决策权保留给自己,自己将获得下一个数的决策权

假定他们都使用最优策略,求他们最后分别能获得多少分

Input

第一行是一个整数\(n\)代表序列长度

第二行有\(n\)个用空格隔开的整数,代表这个序列

Output

输出一行两个用空格隔开的整数,代表Alice和Bob的最终得分

Hint

\(Forall:\)

\(0~\leq~n~\leq~50\)。

若设序列为\(a\),则\(1~\leq~a_i~\leq~100000\)

Solution

傻逼数据范围给了50……看着题目想折半搜索想了半天,搜了下题解发现是\(O(n)\)的DP……那你给我50的范围是要干嘛啊emmmm

考虑正着dp,设\(f_i\)为前\(i\)个数的ans,于是发现并不能转移,因为填表转移时是对手和你一起决策,一个取max一个取min显然没法做。填表法并不能记录这个状态是先手的还是后手的,记录先后手也不能做。

于是考虑倒着做,设\(f_i\)为从\(i\)开始选一直选到\(n\),发现这样的决策是自己一个人做最优决策,转移到下一维的最大值即可。方程显然:

\[f_i~=~\max(f_{i+1}~,sum_{i}-f_{i+1})
\]

其中\(sum\)代表后缀和

Code

#include <cstdio>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define rg register
#define ci const int
#define cl const long long typedef long long int ll; namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if(front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if(front == end) return -1;
}
return *(front++);
}
} template <typename T>
inline void qr(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if(lst == '-') x = -x;
} template <typename T>
inline void ReadDb(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
while((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
if(ch == '.') {
ch = IPT::GetChar();
double base = 1;
while((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
}
if(lst == '-') x = -x;
} namespace OPT {
char buf[120];
} template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if(x < 0) {x = -x, putchar('-');}
rg int top=0;
do {OPT::buf[++top] = x % 10 + '0';} while( x /= 10);
while(top) putchar(OPT::buf[top--]);
if(pt) putchar(aft);
} const int maxn = 55; int n;
int MU[maxn], sum[maxn], frog[maxn]; int main() {
freopen("1.in","r",stdin);
qr(n);
for(rg int i = 1; i <= n; ++i) qr(MU[i]);
for(rg int i = n; i; --i) sum[i] = sum[i+1] + MU[i];
for(rg int i = n; i; --i) frog[i] = std::max(frog[i+1], sum[i] - frog[i+1]);
qw(sum[1] - frog[1], ' ', true);qw(frog[1], '\n', true);
return 0;
}

Summary

正着不能DP时,考虑反着做

【DP】CF859C Pie Rules的更多相关文章

  1. HDOJ_1087_Super Jumping! Jumping! Jumping! 【DP】

    HDOJ_1087_Super Jumping! Jumping! Jumping! [DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...

  2. Kattis - honey【DP】

    Kattis - honey[DP] 题意 有一只蜜蜂,在它的蜂房当中,蜂房是正六边形的,然后它要出去,但是它只能走N步,第N步的时候要回到起点,给出N, 求方案总数 思路 用DP 因为N == 14 ...

  3. HDOJ 1423 Greatest Common Increasing Subsequence 【DP】【最长公共上升子序列】

    HDOJ 1423 Greatest Common Increasing Subsequence [DP][最长公共上升子序列] Time Limit: 2000/1000 MS (Java/Othe ...

  4. HDOJ 1501 Zipper 【DP】【DFS+剪枝】

    HDOJ 1501 Zipper [DP][DFS+剪枝] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...

  5. HDOJ 1257 最少拦截系统 【DP】

    HDOJ 1257 最少拦截系统 [DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...

  6. HDOJ 1159 Common Subsequence【DP】

    HDOJ 1159 Common Subsequence[DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...

  7. POJ_2533 Longest Ordered Subsequence【DP】【最长上升子序列】

    POJ_2533 Longest Ordered Subsequence[DP][最长递增子序列] Longest Ordered Subsequence Time Limit: 2000MS Mem ...

  8. HackerRank - common-child【DP】

    HackerRank - common-child[DP] 题意 给出两串长度相等的字符串,找出他们的最长公共子序列e 思路 字符串版的LCS AC代码 #include <iostream&g ...

  9. LeetCode:零钱兑换【322】【DP】

    LeetCode:零钱兑换[322][DP] 题目描述 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成 ...

随机推荐

  1. 互评Alpha版本——基于spec评论作品

    组名:可以低头,但没必要 组长:付佳 组员:张俊余  李文涛  孙赛佳  田良  于洋  刘欣  段晓睿 一.二次元梦之队----I DO 在测评该项目时,我们组索要了该组的apk程序,安装之后我就开 ...

  2. Beta阶段第二次网络会议

    Beta阶段第二次网络会议 第一次会议问题解决情况 画面问题已经解决,游戏提示信息已加入完成 不同情况下背景已加入完成,但细节部分仍需要进行调整 科技树添加完成,权限修改完成,还存在部分细节调整 AI ...

  3. java包名命名规范

    Java的包名都有小写单词组成,类名首字母大写:包的路径符合所开发的 系统模块的 定义,比如生产对生产,物资对物资,基础类对基础类.以便看了包名就明白是哪个模块,从而直接到对应包里找相应的实现. 由于 ...

  4. (Miller Rabin算法)判断一个数是否为素数

    1.约定 x%y为x取模y,即x除以y所得的余数,当x<y时,x%y=x,所有取模的运算对象都为整数. x^y表示x的y次方.乘方运算的优先级高于乘除和取模,加减的优先级最低. 见到x^y/z这 ...

  5. android入门 — 多线程(一)

    android中的一些耗时操作,例如网络请求,如果不能及时响应,就会导致主线程被阻塞,出现ANR,非常影响用户体验,所以一些耗时的操作,我们会想办法放在子线程中去完成. android的UI操作并不是 ...

  6. fastjson&gson

    1.model转fastjson时,model成员变量是对象的,再转成fastjson时,不能仅仅判断key是否存在.应该判断其值是否为"". 2.gson 在 dao层貌似没有用 ...

  7. haproxy调度算法

    调度算法详解 用balance指令指明调度算法, 例如:balance roundrobin   1:roundrobin :动态轮询算法,基于后端服务器的总权重做轮询,后端的服务器数量限制在4095 ...

  8. WOL*LAN远程换醒命令行方法

    wol远程唤醒需要网卡的支持,现在一般的网卡也都支持,只有有线网络能实现. 这里介绍Wake On Lan Command Line的使用 下载地址 https://www.depicus.com/w ...

  9. Python2 读取表格类型文件

    resp = My_Request_Get(xls_url) # My_Request_Get是我自己封装的请求函数,可修改为requests请求f = ]) nrows = table._dimnr ...

  10. MySQL---InnoDB引擎隔离级别详解

    原帖:http://www.cnblogs.com/snsdzjlz320/p/5761387.html SQL标准定义了4种隔离级别,包括了一些具体规则,用来限定事务内外的哪些改变是可见的,哪些是不 ...