https://www.luogu.org/problemnew/show/CF859C

Description

有一个长度为\(n\)的序列,Alice和Bob在玩游戏。Bob先手掌握决策权。

他们从左向右扫整个序列,在任意时刻,拥有决策权的人有如下两个选择:

将当前的数加到自己的得分中,并将决策权给对方,对方将获得下一个数的决策权

将当前的数加到对方的得分中,并将决策权保留给自己,自己将获得下一个数的决策权

假定他们都使用最优策略,求他们最后分别能获得多少分

Input

第一行是一个整数\(n\)代表序列长度

第二行有\(n\)个用空格隔开的整数,代表这个序列

Output

输出一行两个用空格隔开的整数,代表Alice和Bob的最终得分

Hint

\(Forall:\)

\(0~\leq~n~\leq~50\)。

若设序列为\(a\),则\(1~\leq~a_i~\leq~100000\)

Solution

傻逼数据范围给了50……看着题目想折半搜索想了半天,搜了下题解发现是\(O(n)\)的DP……那你给我50的范围是要干嘛啊emmmm

考虑正着dp,设\(f_i\)为前\(i\)个数的ans,于是发现并不能转移,因为填表转移时是对手和你一起决策,一个取max一个取min显然没法做。填表法并不能记录这个状态是先手的还是后手的,记录先后手也不能做。

于是考虑倒着做,设\(f_i\)为从\(i\)开始选一直选到\(n\),发现这样的决策是自己一个人做最优决策,转移到下一维的最大值即可。方程显然:

\[f_i~=~\max(f_{i+1}~,sum_{i}-f_{i+1})
\]

其中\(sum\)代表后缀和

Code

#include <cstdio>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define rg register
#define ci const int
#define cl const long long typedef long long int ll; namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if(front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if(front == end) return -1;
}
return *(front++);
}
} template <typename T>
inline void qr(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if(lst == '-') x = -x;
} template <typename T>
inline void ReadDb(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
while((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
if(ch == '.') {
ch = IPT::GetChar();
double base = 1;
while((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
}
if(lst == '-') x = -x;
} namespace OPT {
char buf[120];
} template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if(x < 0) {x = -x, putchar('-');}
rg int top=0;
do {OPT::buf[++top] = x % 10 + '0';} while( x /= 10);
while(top) putchar(OPT::buf[top--]);
if(pt) putchar(aft);
} const int maxn = 55; int n;
int MU[maxn], sum[maxn], frog[maxn]; int main() {
freopen("1.in","r",stdin);
qr(n);
for(rg int i = 1; i <= n; ++i) qr(MU[i]);
for(rg int i = n; i; --i) sum[i] = sum[i+1] + MU[i];
for(rg int i = n; i; --i) frog[i] = std::max(frog[i+1], sum[i] - frog[i+1]);
qw(sum[1] - frog[1], ' ', true);qw(frog[1], '\n', true);
return 0;
}

Summary

正着不能DP时,考虑反着做

【DP】CF859C Pie Rules的更多相关文章

  1. HDOJ_1087_Super Jumping! Jumping! Jumping! 【DP】

    HDOJ_1087_Super Jumping! Jumping! Jumping! [DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...

  2. Kattis - honey【DP】

    Kattis - honey[DP] 题意 有一只蜜蜂,在它的蜂房当中,蜂房是正六边形的,然后它要出去,但是它只能走N步,第N步的时候要回到起点,给出N, 求方案总数 思路 用DP 因为N == 14 ...

  3. HDOJ 1423 Greatest Common Increasing Subsequence 【DP】【最长公共上升子序列】

    HDOJ 1423 Greatest Common Increasing Subsequence [DP][最长公共上升子序列] Time Limit: 2000/1000 MS (Java/Othe ...

  4. HDOJ 1501 Zipper 【DP】【DFS+剪枝】

    HDOJ 1501 Zipper [DP][DFS+剪枝] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...

  5. HDOJ 1257 最少拦截系统 【DP】

    HDOJ 1257 最少拦截系统 [DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...

  6. HDOJ 1159 Common Subsequence【DP】

    HDOJ 1159 Common Subsequence[DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...

  7. POJ_2533 Longest Ordered Subsequence【DP】【最长上升子序列】

    POJ_2533 Longest Ordered Subsequence[DP][最长递增子序列] Longest Ordered Subsequence Time Limit: 2000MS Mem ...

  8. HackerRank - common-child【DP】

    HackerRank - common-child[DP] 题意 给出两串长度相等的字符串,找出他们的最长公共子序列e 思路 字符串版的LCS AC代码 #include <iostream&g ...

  9. LeetCode:零钱兑换【322】【DP】

    LeetCode:零钱兑换[322][DP] 题目描述 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成 ...

随机推荐

  1. 获取json键值对的对应字符串

    获取json中的姓名 json串ac 关键字key public class Json { public static String json(String  key;String  ac) { JS ...

  2. python接口自动化1-发送get请求 前言

    前言 requests模块,也就是老污龟,为啥叫它老污龟呢,因为这个官网上的logo就是这只污龟,接下来就是学习它了. 一.环境安装 1.用pip安装requests模块 >>pip in ...

  3. UTF-8编码下'\u7528\u6237'转换为中文汉字'用户'

    UTF-8编码下'\u7528\u6237'转换为中文'用户' 一.前言 有过多次,在开发项目中遇见设置文件编码格式为UTF-8,但是打开该文件出现类似\u7528这样的数据,看也看不懂,也不是平常见 ...

  4. Dubbo使用心得2

  5. 苹果任命奢侈品牌博柏利CEO为零售与在线商店高级副总裁

    苹果今天宣布任命英国奢侈品牌博柏利(Burberry)CEO安吉拉•阿伦茨(Angela Ahrendts)为零售与在线商店高级副总裁.这是一个新设的职位,未来她将直接向CEO蒂姆•库克(Tim Co ...

  6. React 初学

    React.createClass({}); getInitialState,this.setState({}); {}解读代码块,外层不要加引号,比如onChange={this.handleCha ...

  7. Wormholes POJ 3259(SPFA判负环)

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  8. mysql+linux 忘记密码

    方法一: # /etc/init.d/mysql stop # mysqld_safe --user=mysql --skip-grant-tables --skip-networking & ...

  9. A10

    今日内容: 完善界面.解决剩下的一些问题 明日计划: 无 困难: 无

  10. SQL Server数据库复制

    事务复制 事务复制是一种复制类型,对订阅服务器上应用的初始数据快照,然后当发布服务器上发生数据修改时,将捕获到个别的事务并传播到订阅服务. 事务复制的原理是先将发布服务器数据库中的初始快照发送到各订阅 ...