Matrix Multiplication
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 18928   Accepted: 4074

Description

You are given three n × n matrices A, B and C. Does the equation A × B = C hold true?

Input

The first line of input contains a positive integer n (n ≤ 500) followed by the the three matrices A, B and C respectively. Each matrix's description is a block of n × n integers.

It guarantees that the elements of A and B are less than 100 in absolute value and elements of C are less than 10,000,000 in absolute value.

Output

Output "YES" if the equation holds true, otherwise "NO".

Sample Input

2
1 0
2 3
5 1
0 8
5 1
10 26

Sample Output

YES

Hint

Multiple inputs will be tested. So O(n3) algorithm will get TLE.

Source

 
/*
题意:有3个n*n的矩阵A,B,C,问AB是否等于C。
思路:题目描述很简单,就是用矩阵乘法,但是很明显矩阵乘法的时间复杂度为O(n^3),很明显超时。那怎么改进呢?就是用压缩矩阵的方法:
设矩阵R是1*n的矩阵,根据矩阵的性质,若R*A*B=R*C,那么A*B=C。由此可以看出来,虽然多成了一个矩阵,但是时间复杂度成了O(n^2)。那么问题是这个R的行列式该怎么设定,有人用的随机算法,但是随机算法可能在关键点上出现错误,可以将R设定成一个递增的数列{1,2,3……}。
*/
#include<iostream>
#include<vector>
#include<stdio.h>
#include<string.h>
using namespace std;
int n,x;
int a[][],b[][],c[][];
bool work()
{
int R[],ra[],rab[],rc[];
for(int i=;i<=n;i++) {R[i]=i; ra[i]=; rab[i]=; rc[i]=;} for(int j=;j<=n;j++)
for(int i=;i<=n;i++)
ra[j]+=R[i]*a[i][j]; for(int j=;j<=n;j++)
for(int i=;i<=n;i++)
rab[j]+=ra[i]*b[i][j]; for(int j=;j<=n;j++)
for(int i=;i<=n;i++)
rc[j]+=R[i]*c[i][j]; for(int i=;i<=n;i++)
if (rab[i]!=rc[i]) return ;
return ;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
scanf("%d",&a[i][j]);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
scanf("%d",&b[i][j]);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
scanf("%d",&c[i][j]);
if (work()) printf("YES\n");
else printf("NO\n");
return ;
}

Poj 3318 Matrix Multiplication( 矩阵压缩)的更多相关文章

  1. POJ 3318 Matrix Multiplication(矩阵乘法)

    题目链接 题意 : 给你三个n维矩阵,让你判断A*B是否等于C. 思路 :优化将二维转化成一维的.随机生成一个一维向量d,使得A*(B*d)=C*d,多次生成多次测试即可使错误概率大大减小. #inc ...

  2. 数学(矩阵乘法,随机化算法):POJ 3318 Matrix Multiplication

    Matrix Multiplication Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17783   Accepted: ...

  3. [poj 3318] Matrix Multiplication (随机化+矩阵)

    Description You are given three n × n matrices A, B and C. Does the equation A × B = C hold true? In ...

  4. poj 3318 Matrix Multiplication

    http://poj.org/problem?id=3318 矩阵A*矩阵B是否等于矩阵C #include <cstdio> #include <cstring> #incl ...

  5. poj 3318 Matrix Multiplication 随机化算法

    方法1:暴力法 矩阵乘法+优化可以卡时间过的. 方法2:随机化 随机构造向量x[1..n],则有xAB=xC;这样可以将小运算至O(n^2). 代码如下: #include<iostream&g ...

  6. POJ 3318 Matrix Multiplication(随机算法)

    题目链接 随机算法使劲水...srand((unsigned)time(0))比srand(NULL)靠谱很多,可能是更加随机. #include <cstdio> #include &l ...

  7. POJ 3318 - Matrix Multiplication 第一次用随机化解决问题...

    随机化还是很厉害的...印象最深的是以前手写快排~~一般加个随机化会使耗时不受输入数据的..时间更加稳定 这个题是人品题了...开始交了好多遍都过不了..多交几次终于过了... Program: #i ...

  8. PKU 3318 Matrix Multiplication(随机化算法||状态压缩)

    题目大意:原题链接 给定三个n*n的矩阵A,B,C,验证A*B=C是否成立. 所有解法中因为只测试一组数据,因此没有使用memset清零 Hint中给的傻乎乎的TLE版本: #include<c ...

  9. HDU 4920 Matrix multiplication(矩阵相乘)

    各种TEL,233啊.没想到是处理掉0的情况就能够过啊.一直以为会有极端数据.没想到居然是这种啊..在网上看到了一个AC的奇妙的代码,经典的矩阵乘法,仅仅只是把最内层的枚举,移到外面就过了啊...有点 ...

随机推荐

  1. ubuntu中mysql版本升级到5.7

    0 前言 前几天图书馆说服务器(Ubuntu14.04)有安全漏洞,不按时修复会关停. 看了一下漏洞清单,主要是ssh和mysql的版本问题. 把mysql升级了一下,升到了5.7,升级之前还备份了数 ...

  2. Android开发环境配置到第一个程序所遇到的问题

    1.安装顺序 先jdk,最后是1.7或1.8吧,配置环境变量:然后是sdk,配置环境变量:sdk安装之后即可以通过SDK Manager进行其他包的安装. 2.sdk及其他包的安装,以一张图表示,对于 ...

  3. Redis学习笔记之Redis中5种数据结构的使用场景介绍

    原来看过 redisbook 这本书,对 redis 的基本功能都已经熟悉了,从上周开始看 redis 的源码.目前目标是吃透 redis 的数据结构.我们都知道,在 redis 中一共有5种数据结构 ...

  4. web.xml<context-param>与<init-param>的作用与区别

    <context-param>的作用:web.xml的配置中<context-param>配置作用1. 启动一个WEB项目的时候,容器(如:Tomcat)会去读它的配置文件we ...

  5. 20144303 《Java程序设计》第五周学习总结

    20144303 <Java程序设计>第五周学习总结 教材学习内容总结 第八章 异常处理 异常就是程序在运行时出现不正常情况,异常的由来是因为Java把出现的问题封装成了对象,换句话说Ja ...

  6. COGS 723. [SDOI2007] 超级数组

    ★★☆   输入文件:arr.in   输出文件:arr.out   简单对比 时间限制:1 s   内存限制:3 MB  Source: SDOI2007 Day2[问题描述] 一般的数组大家都经常 ...

  7. CentOS7安装GNOME可视化界面

    1.首先安装X(X Window System),命令为 yum groupinstall "X Window System" 回车(注意有引号)   1CentOS Linux系 ...

  8. 防止XSS攻击的方式

    主要有三种请求方式,进行过滤替换非法符号 1.普通的GET请求数据: 2.FORM表单提交数据: 3.Json格式数据提交: 把下面5个文件放入项目中即可 package com.joppay.adm ...

  9. 【bzoj1369】[Baltic2003]Gem(树形dp+结论)

    题目传送门:bzoj1369 这题其实有个结论:节点数为n的树,对其染色使相邻节点颜色不同,且总颜色权值最小,所需的颜色数量是$ O(\log n) $的. 所以我们就可以愉快的dp了:$ f[i][ ...

  10. Python学习札记(十五) 高级特性1 切片

    参考: 高级特性 切片 Note 1.掌握了Python的基础语法之后,就可以写出很多很有用的程序了,比如打印1-90的奇数: #!/usr/bin/env python3 L = [] n = 1 ...