CH5301 石子合并【区间dp】
5301 石子合并 0x50「动态规划」例题
描述
设有N堆沙子排成一排,其编号为1,2,3,…,N(N<=300)。每堆沙子有一定的数量,可以用一个整数来描述,现在要将这N堆沙子合并成为一堆,每次只能合并相邻的两堆,合并的代价为这两堆沙子的数量之和,合并后与这两堆沙子相邻的沙子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同,如有4堆沙子分别为 1 3 5 2 我们可以先合并1、2堆,代价为4,得到4 5 2 又合并 1,2堆,代价为9,得到9 2 ,再合并得到11,总代价为4+9+11=24,如果第二步是先合并2,3堆,则代价为7,得到4 7,最后一次合并代价为11,总代价为4+7+11=22;问题是:找出一种合理的方法,使总的代价最小。输出最小代价。
输入格式
第一行一个数N表示沙子的堆数N。
第二行N个数,表示每堆沙子的质量(<=1000)。
输出格式
合并的最小代价
样例输入
4
1 3 5 2
样例输出
22
来源
CCF NOI1995
题意:
n堆石子,每堆有一个重量ai。现在想把他们合并成一堆,每次只能合并相邻的。花费的体力是合并的两堆石子重量和。要求花费体力最小。
思路:
任意时刻,任意一堆石子可以用一个闭区间[l,r]来描述,表示这堆石子是有最初的第l~r堆石子合并成的。一定存在一个整数k,在这堆石子形成前,先有l~k堆石子被合并,k+1~r堆石子被合并,然后这两堆才合并为l~r
两个长度较小的区间上的信息向一个更长的区间发生了转移,划分点k就是转移的决策。把区间长度len作为DP的阶段。
虐狗宝典笔记:
区间DP以“区间长度”作为DP的阶段,使用两个坐标(区间的左右端点)描述每个维度。区间DP中,一个状态由若干个比它更小且包含于它的区间所带代表的状态转移而来,因此区间DP的决策往往就是划分区间的方法。
实现动态规划的状态转移方程时,务必分清阶段、状态与决策,三者应该按照从外到内的顺序依次循环。
//#include <bits/stdc++.h>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<stdio.h>
#include<cstring>
#include<map> #define inf 0x3f3f3f3f
using namespace std;
typedef long long LL; int n;
const int maxn = ;
int a[maxn];
int dp[maxn][maxn], sum[maxn]; int main()
{
while(scanf("%d", &n) != EOF){
memset(sum, , sizeof(sum));
memset(dp, inf, sizeof(dp));
for(int i = ; i <= n; i++){
scanf("%d", &a[i]);
sum[i] = sum[i - ] + a[i];
dp[i][i] = ;
} for(int len = ; len <= n; len++){
for(int l = ; l <= n - len + ; l++){
int r = l + len - ;
for(int k = l; k < r; k++){
dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + ][r]);
}
dp[l][r] += sum[r] - sum[l - ];
}
} printf("%d\n", dp[][n]);
}
return ;
}
CH5301 石子合并【区间dp】的更多相关文章
- 洛谷 P1880 [NOI1995] 石子合并(区间DP)
传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...
- 石子合并 区间dp模板
题意:中文题 Description 在操场上沿一直线排列着 n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的两堆石子合并成新的一堆, 并将新的一堆石子数记为该次合并的得分.允许在第一次合 ...
- HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结
题意:给定一个字符串 输出回文子序列的个数 一个字符也算一个回文 很明显的区间dp 就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...
- 石子合并 区间DP模板题
题目链接:https://vjudge.net/problem/51Nod-1021 题意 N堆石子摆成一条线.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石 ...
- 洛谷 P1080 石子合并 ( 区间DP )
题意 : 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分.试设计出1个算法,计算出将N堆石子合并成1堆 ...
- 石子合并——区间dp
石子合并(3种变形) <1> 题目: 有N堆石子排成一排(n<=100),现要将石子有次序地合并成一堆,规定每次只能选相邻的两堆合并成一堆,并将新的一堆的石子数,记为改次合并的得分, ...
- 洛谷P1880 石子合并(环形石子合并 区间DP)
题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...
- HRBUST - 1818 石子合并 区间dp入门
有点理解了进阶指南上说的”阶段,状态和决策“ /* 区间dp的基础题: 以区间长度[2,n]为阶段,枚举该长度的区间,状态dp[l][r]表示合并区间[l,r]的最小费用 状态转移方程dp[l][r] ...
- HDU 3506 (环形石子合并)区间dp+四边形优化
Monkey Party Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)Tot ...
- P1880 [NOI1995]石子合并 区间dp+拆环成链
思路 :一道经典的区间dp 唯一不同的时候 终点和起点相连 所以要拆环成链 只需要把1-n的数组在n+1-2*n复制一遍就行了 #include<bits/stdc++.h> usi ...
随机推荐
- 二级指针 (C语言)
二级指针又叫双指针.C语言中不存在引用,所以当你试图改变一个指针的值的时候必须使用二级指针.C++中可以使用引用类型来实现. 下面讲解C中的二级指针的使用方法. 例如我们使用指针来交换两个整型变量的值 ...
- Coreseek:第一步配置文件
Windows操作系统下:mysql数据源配置:(相应coreseek-3.2.13-win32/etc/csft_mysql.conf) #源定义 source mysql { type = mys ...
- 【亲测好用!】shell批量采集百度下拉框关键词
[亲测好用!]shell批量采集百度下拉框关键词 SEO工具 方法 11个月前 (11-18) 2153浏览 3条评论 百度已收录 一直想写一篇用shell采集百度下拉框关键词的教程,个人感觉用 ...
- LoadRunner “add measurements”(添加度量)菜单问题
HP LoadRunner 11版本 配置
- haproxy+keepalived实现高可用负载均衡(转)
软件负载均衡一般通过两种方式来实现:基于操作系统的软负载实现和基于第三方应用的软负载实现.LVS就是基于Linux操作系统实现的一种软负载,HAProxy就是开源的并且基于第三应用实现的软负载. ...
- [android] AndroidManifest.xml - 【 manifest -> Application -> activity 】
<activity android:allowTaskReparenting=["true" | "false"] android:alwaysRetai ...
- Spring MVC属于SpringFrameWork的后续产品
Spring MVC属于SpringFrameWork的后续产品,已经融合在Spring Web Flow里面.Spring MVC 分离了控制器.模型对象.分派器以及处理程序对象的角色,这种分离让它 ...
- 面向对象方法的重载(overloading)和覆盖(overriding)
面向对象方法的重载(overloading)和覆盖(overriding). 在有些JAVA书籍中将overriding称为重载,overloading称为过载. Overloading在一个类中可以 ...
- 【BZOJ】1638: [Usaco2007 Mar]Cow Traffic 奶牛交通(dfs+dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1638 一条边(u, v)经过的数量=度0到u的数量×v到n的数量 两次记忆化dfs算出他们即可 #i ...
- VB.NET多线程入门
近期项目中遇到了一个处理速度慢阻塞用户界面操作的问题,因此想用多线程来解决. 在处理数据的循环中,新建线程,在新建的线程中处理数据.多线程同一时候处理数据,以此来达到加速的目的,使用户界面操作变得流畅 ...