深度学习方法(十一):卷积神经网络结构变化——Google Inception V1-V4,Xception(depthwise convolution)
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld。
技术交流QQ群:433250724,欢迎对算法、机器学习技术感兴趣的同学加入。
上一篇讲了深度学习方法(十):卷积神经网络结构变化——Maxout Networks,Network In Network,Global Average Pooling,本篇讲一讲Google的Inception系列net,以及还是Google的Xception。(扯一下,Google的Researcher们还是给了很多很棒的idea的,希望读者朋友和我自己在了解paper之余,可以提出自己的想法,并实现。)
如果想看Xception,就直接拉到最后看,有手画示意图。
Inception V1-V4
Inception V1:
V1是大家口头说的Googlenet,在之前的深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning有简单介绍,这里再凝练一下创新点:
图1
要想提高CNN的网络能力,比如分类准确率,一般的想法就是增大网络,比如Alexnet确实比以前早期Lenet大了很多,但是纯粹的增大网络——比如把每一层的channel数量翻倍——但是这样做有两个缺点——参数太多容易过拟合,网络计算量也会越来越大。
以下重点:目前很多工作证明,要想增强网络能力,可以:增加网络深度,增加网络宽度;但是为了减少过拟合,也要减少自由参数。因此,就自然而然有了这个第一版的Inception网络结构——同一层里面,有卷积1* 1, 3* 3,5* 5 不同的卷积模板,他们可以在不同size的感受野做特征提取,也算的上是一种混合模型了。因为Max Pooling本身也有特征提取的作用,而且和卷积不同,没有参数不会过拟合,也作为一个分支。但是直接这样做,整个网络计算量会较大,且层次并没有变深,因此,在3*3和5*5卷积前面先做1*1的卷积,降低input的channel数量,这样既使得网络变深,同时计算量反而小了;(在每一个卷积之后都有ReLU)
Inception V2-V3:
V2和V3版本比较接近,就不绝对区分了,具体可以看[3]。讲一讲其中的创新点:
首先,用两层堆叠的3*3代替了一层5*5,我们可以看到,这样做参数量少了,计算量少了,但是层数变深了,效果也变好了:
用1*3和3*1卷积替代3*3卷积,计算量少了很多,深度变深,思路是一样的。(实际上是1*n和n*1替代n*n,n可以变)
放到Inception结构里,下面是原始的Inception
下面图5-6-7是改进版本:
总体的网络结构:
我们看到,Inception并不是全程都用,是在图像比较小了采用,并且,图5-6-7的结构是依次用的,他们适合不同size的图像。
Inception V4:
v4研究了Inception模块结合Residual Connection能不能有改进?发现ResNet的结构可以极大地加速训练,同时性能也有提升,得到一个Inception-ResNet v2网络,同时还设计了一个更深更优化的Inception v4模型,能达到与Inception-ResNet v2相媲美的性能 [7]
Inception-resnet-v1 and Inception-ResNet v2都是用的这个结构图,区别在于下图的注释中,
这篇文章通篇就是各种微结构变化,我在这里贴也没什么意思,希望读者移步论文[4],找到对应的图号,看一下。
其实我也有疑惑,虽然paper总可以说出一些道道,结果也确实有一定提升,但是对于不同层设计了完全不同的微结构,这样会不会模式上太不统一了?有没有用更简洁统一的方式,达到一样的效果呢?我相信是有的,自我感觉Inception V1的模式很简单,Resnet的跳层结构也很简单,美,但是到了V4这里,结构变化太多,很难理解为什么是必须的呢?**
就好比我们以前做电影推荐比赛,最终获胜的结果往往是多模型混合,但是我个人还是最感兴趣那个最最有效果的单模型是什么样的。
Xception
非常新的一个工作[5],前面讲了那么多Inception网络,那么Inception网络的极限是什么呢?其中一个极限版本如下:
在1*1卷积之后,对每一个channel,做3*3的*1的独立卷积,然后再concat。认为每一个spatial conv对cross channel feature是没有关系的。
[5]作者提出了Depthwise Separable Convolution,或者简称Depthwise Convolution,是下面这个样子:先做channel-wise conv,然后再过1*1卷积,中间没有ReLU,最后有ReLU。
上面提到两种结构的区别,文中这一段写的很清楚:
整个网络结构:
OK,本篇到这里,只是作为一个记录和引导,让大家发现更多结构设计的idea。
参考资料
下面参考资料部分paper还带了test error
[1] Going Deeper with Convolutions, 6.67% test error
http://arxiv.org/abs/1409.4842
[2] Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 4.8% test error
http://arxiv.org/abs/1502.03167
[3] Rethinking the Inception Architecture for Computer Vision, 3.5% test error
http://arxiv.org/abs/1512.00567
[4] Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, 3.08% test error
[5] Xception: Deep Learning with Depthwise Separable Convolutions
[6] 深入浅出——网络模型中Inceptionv1到 v4 的作用与结构全解析
[7] Inception in CNN
[8] 论文笔记 | Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
深度学习方法(十一):卷积神经网络结构变化——Google Inception V1-V4,Xception(depthwise convolution)的更多相关文章
- 深度学习方法(十三):卷积神经网络结构变化——可变形卷积网络deformable convolutional networks
上一篇我们介绍了:深度学习方法(十二):卷积神经网络结构变化--Spatial Transformer Networks,STN创造性地在CNN结构中装入了一个可学习的仿射变换,目的是增加CNN的旋转 ...
- 深度学习之卷积神经网络CNN及tensorflow代码实现示例
深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习 版权声明 ...
- 深度学习之卷积神经网络(CNN)的应用-验证码的生成与识别
验证码的生成与识别 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10755361.html 目录 1.验证码的制 ...
- 深度学习之卷积神经网络CNN及tensorflow代码实例
深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂 ...
- 【神经网络与深度学习】卷积神经网络(CNN)
[神经网络与深度学习]卷积神经网络(CNN) 标签:[神经网络与深度学习] 实际上前面已经发布过一次,但是这次重新复习了一下,决定再发博一次. 说明:以后的总结,还应该以我的认识进行总结,这样比较符合 ...
- 深度学习方法(十):卷积神经网络结构变化——Maxout Networks,Network In Network,Global Average Pooling
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 最近接下来几篇博文会回到神经网络结构 ...
- TensorFlow 深度学习笔记 卷积神经网络
Convolutional Networks 转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Is ...
- 深度学习之卷积神经网络(CNN)
卷积神经网络(CNN)因为在图像识别任务中大放异彩,而广为人知,近几年卷积神经网络在文本处理中也有了比较好的应用.我用TextCnn来做文本分类的任务,相比TextRnn,训练速度要快非常多,准确性也 ...
- 深度学习之卷积神经网络CNN
转自:https://blog.csdn.net/cxmscb/article/details/71023576 一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连 ...
随机推荐
- FreeRTOSv9.0.0在STM32F103RCT6上的移植
1.去官网下载源代码(FreeRTOSv9.0.0.exe) 2.取出Source文件夹,根据单片机和编译器不同,删除不需要的文件,如下图 3.在CORTEX_STM32F103_IAR文件夹中取出P ...
- 「HTML5」url、href、src区别
一.URL的概念 统一资源定位符(或称统一资源定位器/定位地址.URL地址等,英语:Uniform Resource Locator,常缩写为URL),有时也被俗称为网页地址(网址).如同在网络上的门 ...
- 往android主项目中添加辅助项目
一个较大的工程往往需要多个项目组成,便于更好的并行开发和管理,但最后还是要合到一起来发布.那如何往主项目里添加其他辅助项目呢? 通常的做法是将辅助项目打包成jar包,像库一样导入到主项目,但是如果我们 ...
- UVA 11982 Fantasy Cricket
https://vjudge.net/problem/UVA-11982 题意: 给出一个包含’U’, ‘D’, ‘E’的字符串, ’U’ 表示需要把这个字符向后移动, ’D’表示需要把这个字符向前移 ...
- 数学:Nim游戏和SG函数
有若干堆石子,两人轮流从中取石子,取走最后一个石子的人为胜利者 以下的性质是显然的 .无法移动的状态是必败态 .可以移动到必败态的局面一定是非必败态 .在必败态做所有操作的结果都是非必败态 在普通Ni ...
- python列表排序方法reverse、sort、sorted
python语言中的列表排序方法有三个:reverse反转/倒序排序.sort正序排序.sorted可以获取排序后的列表.在更高级列表排序中,后两中方法还可以加入条件参数进行排序. reverse() ...
- CSS 颜色属性
一.十六进制表示,如: a{ color: #F0E68C; } 当RGB一样时,可以简写,如#AABBCC 可以写成 #ABC 二.rgb(r,g,b)形式,其中rgb的值为1~255之间,如: a ...
- sqoop一些语法的使用
参数详细资料 观看这个博客 http://shiyanjun.cn/archives/624.html Sqoop可以在HDFS/Hive和关系型数据库之间进行数据的导入导出,其中主要使用了impor ...
- 通过删除hbase表中的region来达到删除表中数据
公司最近在搞一个hbase删除数据,由于在建表的时候是通过region来对每日的数据进行存储的,所以要求在删除的时候直接通过删除region的来删除数据(最好的方案是只删除region中的数据,不把r ...
- 【leetcode 简单】第四十九题 颠倒二进制位
颠倒给定的 32 位无符号整数的二进制位. 示例: 输入: 43261596 输出: 964176192 解释: 43261596 的二进制表示形式为 000000101001010000011110 ...