从零开始编写深度学习库(五)PoolingLayer 网络层CPU编写
记录:编写卷积层和池化层,比较需要注意的细节就是边界问题,还有另外一个就是重叠池化的情况,这两个小细节比较重要,边界问题pad在反向求导的时候,由于tensorflow是没有计算的,另外一个比较烦人的是Eigen::Tensor的rowmajor、和colmajor问题,也很烦人。为了跟tensorflow做比较,一些边界处理上的细节,需要特别注意。
一、c++、maxpooling、avgpooling
#pragma once
#include "config.h"
#include <vector>
enum PoolingMethod
{
max,
avg
};
class CPoolingLayer
{
public:
CPoolingLayer(std::vector<int>pooling_shape,PoolingMethod pooling_method, int padding = 0) {
m_hksize = pooling_shape[0];
m_wksize = pooling_shape[1];
m_hstride = pooling_shape[2];
m_wstride = pooling_shape[3];
m_padding = padding;
m_pooling_method = pooling_method;
};
~CPoolingLayer() {
};
//返回(bottom[0],bottom[1]/hstride*bottom[2]/wstride,hsize,wsize,bottom[3])
void CPoolingLayer::extract_image_patches(const Tensor4xf &bottom, Tensor5xf &patches) {
//这个Eigen tensor类的extract_image_patches函数,由于有数据存储列排列、行排列两种不同的模式。
//在下面函数中,如果是采用rowmajor,下面的调用方式才是正确的
//不能采用bottom.extract_image_patches( m_hksize,m_wksize, m_hstride,m_wstride, 1, 1);
//switch (m_padding_method)
//{
//case valid:
patches = bottom.extract_image_patches(m_hksize, m_wksize, m_hstride, m_wstride, 1, 1,
Eigen::PADDING_VALID);
//break;
//case same:
//patches = bottom.extract_image_patches(m_hksize, m_wksize, m_hstride, m_wstride, 1, 1,
//Eigen::PADDING_SAME );
//break;
//default:
//break;
//}
}
//根据stride、size等计算输出数据的维度形状
Eigen::DSizes<int, 4> CPoolingLayer::get_top_shape(const Tensor4xf&bottom) {
Eigen::DSizes<int, 4>top_shape;
top_shape[0] = bottom.dimension(0);
//switch (m_padding_method)
//{
//case valid:
top_shape[1] = Eigen::divup(float(bottom.dimension(1) - m_hksize + 1), float(m_hstride));
top_shape[2] = Eigen::divup(float(bottom.dimension(2) - m_wksize + 1), float(m_wstride));
//break;
//case same:
//top_shape[1] = Eigen::divup(float(bottom.dimension(1)), float(m_hstride));
//top_shape[2] = Eigen::divup(float(bottom.dimension(2)), float(m_wstride));
//break;
//default:
//break;
//}
top_shape[3] = bottom.dimension(3);
return top_shape;
}
//需要特别注意这边的均值池化,与tesorflow,在same模式下处理方式不同,tensorflow的在计算池化的时候,
//不管有没有padding,padding值在计算池化操作都被忽略
// bottom(batch_size, input_height, input_width, input_channel);
void CPoolingLayer::forward(const Tensor4xf&bottom,Tensor4xf&top, const Eigen::ThreadPoolDevice &device) {
Tensor4xf pad_bottom;
CBaseFunction::padding_forward(bottom, m_padding, m_padding, pad_bottom);
Eigen::array<int, 2> reduction_dims{1,2};//第二维、第三维的大小等于(hksize、wksize)
Eigen::DSizes<int, 4>post_reduce_dims=get_top_shape(pad_bottom);
Tensor5xf patches; //(bottom[0], hsize, wsize,bottom[1] / hstride*bottom[2] / wstride, bottom[3])
extract_image_patches(pad_bottom, patches);
Tensor3xf pooling(post_reduce_dims[0],post_reduce_dims[1]*post_reduce_dims[2],post_reduce_dims[3]);
switch (m_pooling_method)
{
case avg:
pooling.device(device) = patches.mean(reduction_dims);//对reduction_dims内对应的维度索引进行统计,比如统计第3、2
break;
case max:
pooling.device(device) = patches.maximum(reduction_dims);//最大池化
break;
default:
break;
}
top=pooling.reshape(post_reduce_dims);
}
//本函数主要用于索引解码,从一维索引到获取多维下标值。主要原因在于:max
std::vector<int> CPoolingLayer::decode_index(std::vector<int>dim,int index) {
std::vector<int>result;
for (int i=0;i<5;i++)
{
int accu = 1;
for (int j=5-1;j>i;j--)
{
accu *= dim[j];
}
result.push_back(std::floor(index / accu));
index = index%accu;
}
return result;
}
//主要是重叠池化的时候,反向求导的时候是微分值累加。
void CPoolingLayer::maxpooling_backward(const Tensor4xf&bottom,const Tensor4xf&dtop,Tensor4xf&dbottom) {
Tensor4xf pad_bottom;
CBaseFunction::padding_forward(bottom, m_padding, m_padding, pad_bottom);
Tensor5xf patches;
extract_image_patches(pad_bottom, patches);
Tensor4xf dpad_bottom(pad_bottom.dimension(0), pad_bottom.dimension(1), pad_bottom.dimension(2), pad_bottom.dimension(3));
dpad_bottom.setZero();
Eigen::DSizes<int, 4>post_reduce_dims = get_top_shape(pad_bottom);
Eigen::array<Eigen::DenseIndex, 2> reduce_dims{ 1,2 };
auto index_tuples = patches.index_tuples();
Eigen::Tensor<Eigen::Tuple<Eigen::DenseIndex, float>, 3, Eigen::internal::traits<Tensor5xf>::Layout> reduced_by_dims;
reduced_by_dims = index_tuples.reduce(reduce_dims, Eigen::internal::ArgMaxTupleReducer<Eigen::Tuple<Eigen::DenseIndex, float> >());
int batch = dtop.dimension(0);
int height = dtop.dimension(1);
int widht = dtop.dimension(2);
int channel = dtop.dimension(3);
bool isColMajor = (Eigen::internal::traits<Tensor4xf>::Layout ==Eigen::ColMajor);
for (int b= 0; b < batch; b++)
{
for (int h = 0; h< height; h++)
{
for (int w = 0; w < widht; w++)
{
for (int c = 0; c <channel ; c++)
{
const auto &dmax_element = dtop(b, h, w, c);
int max_inpatch_height;
int max_inpatch_width;
if (isColMajor) {//如果是列主元存储,那么维度的序号刚好相反,由(b,h,w,c)变成(c,w,h,b)
const Eigen::Tuple<Eigen::DenseIndex, float>&v = reduced_by_dims(c*widht*height*batch + w*height*batch + h*batch + b);
int index_in_patch = v.first % (m_wksize*m_hksize);//最大值在每个块中的索引
max_inpatch_height = index_in_patch%m_hksize;
max_inpatch_width = index_in_patch / m_hksize;
}
else{
const Eigen::Tuple<Eigen::DenseIndex, float>&v = reduced_by_dims(b*height*widht*channel + h*widht*channel + w*channel + c);
int index_in_patch = v.first % (m_wksize*m_hksize);//最大值在每个块中的索引
max_inpatch_height = index_in_patch/m_wksize;
max_inpatch_width = index_in_patch % m_wksize;
}
int patch_height = h*m_hstride + max_inpatch_height;
int patch_width = w*m_wstride + max_inpatch_width;
dpad_bottom(b, patch_height, patch_width, c) += dmax_element;
/*if (patch_height < dbottom.dimension(1) && patch_width < dbottom.dimension(2))
{
dbottom(b, patch_height, patch_width, c) += dmax_element;
}
else
{
std::cout << "out of range" << std::endl;
}*/
}
}
}
}
CBaseFunction::padding_backward(dpad_bottom, m_padding, m_padding, dbottom);
}
//均值池化,也可以看成是卷积
void CPoolingLayer::avgpooling_backward(const Tensor4xf&dtop, Tensor4xf&dbottom) {
Tensor4xf mean_coffe = dtop*(1.f / (m_wksize*m_hksize));//均值池化反向求导要除以均值系数
for (int b=0;b<mean_coffe.dimension(0);b++)
{
for (int h=0;h<mean_coffe.dimension(1);h++)
{
for (int w=0;w<mean_coffe.dimension(2);w++)
{
for (int c=0;c<mean_coffe.dimension(3);c++)
{
const auto &mean_element= mean_coffe(b, h, w, c);
for (int kh=0;kh<m_hksize;kh++)
{
for (int kw=0;kw<m_wksize;kw++)
{
int patch_height = h*m_hstride + kh - m_padding;
int patch_width = w*m_wstride + kw - m_padding;
if (patch_height>=0 &&patch_width>=0&&patch_width<dbottom.dimension(2)&&patch_height<dbottom.dimension(1))
{
dbottom(b, patch_height, patch_width,c) += mean_element;
}
}
}
}
}
}
}
//CBaseFunction::padding_backward(dpad_bottom, m_padding_method, m_padding_method, dbottom);
}
void CPoolingLayer::backward(const Tensor4xf&bottom,const Tensor4xf&dtop, Tensor4xf&dbottom, const Eigen::ThreadPoolDevice &device) {
dbottom.setZero();
//计算第2、3维的降维
switch (m_pooling_method)
{
case max:
maxpooling_backward(bottom, dtop, dbottom);
break;
case avg:
avgpooling_backward(dtop, dbottom);
break;
default:
break;
}
}
private:
int m_hksize;//池化块的长宽
int m_wksize;
int m_hstride;//池化步长
int m_wstride;
int m_padding;//边界处理方法
PoolingMethod m_pooling_method;//池化方法:均值池化、最大池化等
};
class CPoolingLayer_test
{
public:
static void CPoolingLayer_test::test() {
Eigen::ThreadPool *tp = new Eigen::ThreadPool(8);
Eigen::ThreadPoolDevice device(tp, 8);
int batch_size = 1;
int input_channel =1;
int input_height =5;
int input_width =5;
int kenel_height = 3;
int kenel_widht = 2;
int khstride =2;
int kwstride = 3;
int pad = 0;
Tensor4xf bottom(batch_size, input_height, input_width, input_channel);
int count = 0;
for (int i=0;i<batch_size;i++)
{
for (int j=0;j<input_height;j++)
{
for (int k=0;k<input_width;k++)
{
for (int h=0;h<input_channel;h++)
{
bottom(i, j, k, h) = 0.1f*count;
count++;
}
}
}
}
Tensor1xf label_1d(batch_size);
for (int i = 0; i < batch_size; i++)
{
label_1d(i) = i;
}
//第一层:pooling层
CPoolingLayer layer({kenel_height,kenel_widht,khstride,kwstride },PoolingMethod::max,pad);
Tensor4xf top;
layer.forward(bottom, top,device);
Tensor2xf top_flatten;
CBaseFunction::flatten(top, top_flatten);
//第二层:sotfmax网络层
Tensor2xf one_hot;
CBaseFunction::onehot(label_1d, top_flatten.dimension(1), one_hot);
Tensor2xf dtop_flatten(top_flatten);
float loss = CBaseFunction::softmax_with_loss(top_flatten, one_hot, dtop_flatten, device);
Tensor4xf dtop;
CBaseFunction::reshape_like(dtop_flatten, top, dtop);
Tensor4xf dbottom(bottom);
layer.backward(bottom, dtop,dbottom,device);
//Tensor4rf dbottom_swap = dbottom.swap_layout();
std::cout << "***************forward************" << std::endl;
//CBaseFunction::print_shape(one_hot);
CBaseFunction::print_shape(dbottom);
CBaseFunction::print_element(dbottom);
//std::cout << "bottom" << bottom<< std::endl;
//std::cout << "top" << top << std::endl;
//std::cout << "dbottom" << dbottom << std::endl;
std::cout << "loss" << loss << std::endl;
//std::cout << "dbottom" << dbottom << std::endl;
//std::cout << "dtop" << top << std::endl;
}
};
二、tensorflow 验证结果:
import tensorflow as tf
batch_size = 1
input_channel = 1
input_height =5
input_width = 5
kenel_height =3
kenel_widht =2
khstride =2
kwstride=3
pad=0
bottom=tf.constant([i*0.1 for i in range(batch_size*input_channel*input_height*input_width)],shape=(batch_size,input_height,input_width,input_channel),dtype=tf.float32)
pool1=tf.nn.max_pool(tf.pad(bottom,[[0,0],[pad,pad],[pad,pad],[0,0]]),[1,kenel_height,kenel_widht,1],strides=[1,khstride,kwstride,1],padding='VALID')
pool_flatten=tf.reshape(pool1,[batch_size,-1])
label=tf.constant([i for i in range(batch_size)])
one_hot=tf.one_hot(label,pool_flatten.get_shape().as_list()[1])
predicts=tf.nn.softmax(pool_flatten)
loss =-tf.reduce_mean(one_hot * tf.log(predicts))
#打印相关变量,梯度等,验证是否与c++结果相同
dbottom,dpool1=tf.gradients(loss,[bottom,pool1])
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print (sess.run([dbottom]))
print (sess.run(loss))
#print ('dbottom_data',dbottom_data)
从零开始编写深度学习库(五)PoolingLayer 网络层CPU编写的更多相关文章
- 从零开始编写深度学习库(五)Eigen Tensor学习笔记2.0
1.extract_image_patches函数的使用: 假设Eigen::Tensor形状为(3,8,8,9),现在要对第二维.第三维根据size大小为(2,2),stride=(2,2),那么如 ...
- Kelp.Net是一个用c#编写的深度学习库
Kelp.Net是一个用c#编写的深度学习库 基于C#的机器学习--c# .NET中直观的深度学习 在本章中,将会学到: l 如何使用Kelp.Net来执行自己的测试 l 如何编写测试 l ...
- 30个深度学习库:按Python、C++、Java、JavaScript、R等10种语言分类
30个深度学习库:按Python.C++.Java.JavaScript.R等10种语言分类 包括 Python.C++.Java.JavaScript.R.Haskell等在内的一系列编程语言的深度 ...
- Python机器学习库和深度学习库总结
我们在Github上的贡献者和提交者之中检查了用Python语言进行机器学习的开源项目,并挑选出最受欢迎和最活跃的项目. 1. Scikit-learn(重点推荐) www.github.com/sc ...
- python之感知器-从零开始学深度学习
感知器-从零开始学深度学习 未来将是人工智能和大数据的时代,是各行各业使用人工智能在云上处理大数据的时代,深度学习将是新时代的一大利器,在此我将从零开始记录深度学习的学习历程. 我希望在学习过程中做到 ...
- 人工智能不过尔尔,基于Python3深度学习库Keras/TensorFlow打造属于自己的聊天机器人(ChatRobot)
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_178 聊天机器人(ChatRobot)的概念我们并不陌生,也许你曾经在百无聊赖之下和Siri打情骂俏过,亦或是闲暇之余与小爱同学谈 ...
- 深度学习库 SynapseML for .NET 发布0.1 版本
2021年11月 微软开源一款简单的.多语言的.大规模并行的机器学习库 SynapseML(以前称为 MMLSpark),以帮助开发人员简化机器学习管道的创建.具体参见[1]微软深度学习库 Synap ...
- 64位Win7下安装并配置Python3的深度学习库:Theano
注:本文全原创,作者:Noah Zhang (http://www.cnblogs.com/noahzn/) 这两天在安装Python的深度学习库:Theano.尝试了好多遍,CMake.MinGW ...
- MXNet深度学习库简介
MXNet深度学习库简介 摘要: MXNet是一个深度学习库, 支持C++, Python, R, Scala, Julia, Matlab以及JavaScript等语言; 支持命令和符号编程; 可以 ...
随机推荐
- angularjs中的jqlite的认识理解及操作使用
刚了解angularjs时,就知道它有个内嵌的轻量级的jquery:jqLite,那时候常于jQuery分不清,其实它们是不一样的.jqLite中,通过angular.element(param)获得 ...
- CentOS7系统安装及环境初始化
操作系统安装: 将网卡名称设置为eth*,不使用CentOS 7默认的网卡命名规则.所以需要在安装的时候,增加内核参数.1. 光标选择“Install CentOS 7” 2. 点击Tab,打开 ...
- Secure a Web API with Individual Accounts and Local Login in ASP.NET Web API 2.2
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/individual-accounts-in-web-api Ind ...
- Basic Authentication in ASP.NET Web API
Basic authentication is defined in RFC 2617, HTTP Authentication: Basic and Digest Access Authentica ...
- STL set集合用法总结(multiset)
2017-08-20 15:21:31 writer:pprp set集合容器使用红黑树的平衡二叉树检索树,不会将重复键值插入,检索效率高 logn 检索使用中序遍历,所以可以将元素从小到大排列出来 ...
- 09_MySQL DQL_SQL99标准中的多表查询(外连接)
# 二.外连接/* 场景:查询值在1个表中出现,在另外1个表中没有出现 特点: 0.也是两张表的字段拼接,分为主表和从表 1.外连接的结果,将显示主表中的所有记录行 如果连接字段在从表中有记录,则显示 ...
- 第一个版本库 Repository
Git安装 Windows系统 Git 为 Windows 系统提供了简易的 .exe 安装包, 直接下载并安装就可以了(点这里->):https://git-scm.com/download/ ...
- 这样获取celery的结果 有啥隐患没有啊?
- SQL优化- in和not in
in不会导致索引失效,但最终数据库会将in语句解析为or语句,eg: select * from T_MAIN_PROCESS t where t.audit_status_code in ('05' ...
- 利用Object.defineProperty实现Vue数据双向绑定
body部分很简单,一个输入框和一个展示的div <div> <p>你好,<input id='nickName'></p> <div id=&q ...