deeplenrnig学习笔记——什么是特征
特征是机器学习系统的原材料,对最终模型的影响是毋庸置疑的。如果数据被很好的表达成了特征,通常线性模型就能达到满意的精度。
一、特征的表示粒度:
学习算法在一个什么粒度上的特征表示,才有能发挥作用?就一个图片来说,像素级的特征根本没有价值。例如下面的摩托车,从像素级别,根本得不到任何信息,其无法进行摩托车和非摩托车的区分。而如果特征是一个具有结构性(或者说有含义)的时候,比如是否具有车把手(handle),是否具有车轮(wheel),就很容易把摩托车和非摩托车区分,学习算法才能发挥作用。


二、初级(浅层)的特征表示:
既然像素级的特征表示方法没有作用,那怎样的表示才有用呢?
1995 年前后,Bruno Olshausen和 David Field 两位学者任职 Cornell University,他们试图同时用生理学和计算机的手段,双管齐下,研究视觉问题。
他们收集了很多黑白风景照片,从这些照片中,提取出400个小碎片,每个照片碎片的尺寸均为 16x16 像素,不妨把这400个碎片标记为 S[i], i = 0,.. 399。接下来,再从这些黑白风景照片中,随机提取另一个碎片,尺寸也是 16x16 像素,不妨把这个碎片标记为 T。
他们提出的问题是,如何从这400个碎片中,选取一组碎片,S[k], 通过叠加的办法,合成出一个新的碎片,而这个新的碎片,应当与随机选择的目标碎片 T,尽可能相似,同时,S[k] 的数量尽可能少。用数学的语言来描述,就是:
Sum_k (a[k] * S[k]) --> T, 其中 a[k] 是在叠加碎片 S[k] 时的权重系数。
为解决这个问题,Bruno Olshausen和 David Field 发明了一个算法,稀疏编码(Sparse Coding)。
稀疏编码是一个重复迭代的过程,每次迭代分两步:
1)选择一组 S[k],然后调整 a[k],使得Sum_k (a[k] * S[k]) 最接近 T。
2)固定住 a[k],在 400 个碎片中,选择其它更合适的碎片S’[k],替代原先的 S[k],使得Sum_k (a[k] * S’[k]) 最接近 T。
经过几次迭代后,最佳的 S[k] 组合,被遴选出来了。令人惊奇的是,被选中的 S[k],基本上都是照片上不同物体的边缘线,这些线段形状相似,区别在于方向。
Bruno Olshausen和 David Field 的算法结果,与 David Hubel 和Torsten Wiesel 的生理发现,不谋而合!
也就是说,复杂图形,往往由一些基本结构组成。比如下图:一个图可以通过用64种正交的edges(可以理解成正交的基本结构)来线性表示。比如样例的x可以用1-64个edges中的三个按照0.8,0.3,0.5的权重调和而成。而其他基本edge没有贡献,因此均为0 。

三、结构性特征表示:
小块的图形可以由基本edge构成,更结构化,更复杂的,具有概念性的图形如何表示呢?这就需要更高层次的特征表示,比如V2,V4。因此V1看像素级是像素级。V2看V1是像素级,这个是层次递进的,高层表达由底层表达的组合而成。专业点说就是基basis。V1取提出的basis是边缘,然后V2层是V1层这些basis的组合,这时候V2区得到的又是高一层的basis。即上一层的basis组合的结果,上上层又是上一层的组合basis……
直观上说,就是找到make sense的小patch再将其进行combine,就得到了上一层的feature,递归地向上learning feature。
在不同object上做training是,所得的edge basis 是非常相似的,但object parts和models 就会completely different了(那咱们分辨car或者face是不是容易多了)
deeplenrnig学习笔记——什么是特征的更多相关文章
- Caffe学习笔记4图像特征进行可视化
Caffe学习笔记4图像特征进行可视化 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hit201 ...
- [LBS学习笔记4]地理特征POI、AOI、路径轨迹
1 简述 今天继续LBS地理信息的学习,目标是写到10篇博客的时候,做出一个地图工具页面用,包含地图空间索引Geohash.S2.H3的可视化展示. 地理特征分为点(POI).线(路径).面(AOI) ...
- barabasilab-networkScience学习笔记4-无标度特征
第一次接触复杂性科学是在一本叫think complexity的书上,Allen博士很好的讲述了数据结构与复杂性科学,barabasi是一个知名的复杂性网络科学家,barabasilab则是他所主导的 ...
- Sparse Filtering 学习笔记(二)好特征的刻画
Sparse Filtering 是一个用于提取特征的无监督学习算法,与通常特征学习算法试图建模训练数据的分布的做法不同,Sparse Filtering 直接对训练数据的特征分布进行分析,在所谓 ...
- ArcGIS案例学习笔记-聚类点的空间统计特征
ArcGIS案例学习笔记-聚类点的空间统计特征 联系方式:谢老师,135-4855-4328,xiexiaokui@qq.com 目的:对于聚集点,根据分组字段case field,计算空间统计特征 ...
- UFLDL深度学习笔记 (三)无监督特征学习
UFLDL深度学习笔记 (三)无监督特征学习 1. 主题思路 "UFLDL 无监督特征学习"本节全称为自我学习与无监督特征学习,和前一节softmax回归很类似,所以本篇笔记会比较 ...
- 【学习笔记】SIFT尺度不变特征 (配合UCF-CRCV课程视频)
SIFT尺度不变特征 D. Lowe. Distinctive image features from scale-invariant key points, IJCV 2004 -Lecture 0 ...
- AI学习笔记:特征工程
一.概述 Andrew Ng:Coming up with features is difficult, time-consuming, requires expert knowledge. &quo ...
- Adaptive AUTOSAR 学习笔记 3 - AP 背景、技术及特征(中文翻译)
本系列学习笔记基于 AUTOSAR Adaptive Platform 官方文档 R20-11 版本.本文从AUTOSAR_EXP_PlatformDesign.pdf开始,一边学习,一边顺带着翻译一 ...
随机推荐
- jdbc的简单实现demo
直接上代码吧,只是因为上篇的心血来潮.总结哈 import java.sql.Connection; import java.sql.DriverManager; import java.sql.Re ...
- Spring学习笔记 7.1 Spring MVC起步
7.1.1 跟踪Spring MVC的请求请求首先到达DispatcherServlet(DispatcherServlet是Spring MVC中的前端控制器):DispatcherServlet的 ...
- Servlet------>jsp自定义标签(JSPTAG接口)
TagSupport实现类里不只实现了tag接口,还有tag接口的子接口,也就是IterationTag子接口中增加了doAfterBody()方法和EVAL_BODY_AGAIN常量,为了实现标签体 ...
- Tomcat----->软件密码学基础配置tomcat http连接器 https
公钥只能私钥解开,私钥只能公钥解开. 类似于别人给你一个盒子,你用他的盒子和自己盒子加密,他手中有他的钥匙和自己的钥匙,可以解开就既能证明是你发的也能相信内容. 每个数据有自己的数据指纹,数据指纹是由 ...
- Exchange Powershell:Get-Counter (List connections to OWA )
使用方法: Get-CASActiveUsers -server server1,server2 Get-CASMailbox | Get-CASActiveUsers $RPC = Get-Coun ...
- C# 构建动态Lambda表达式
做CURD开发的过程中,通常都会需要GetList,然而查询条件是一个可能变化的需求,如何从容对应需求变化呢? 首先,我们来设计一个套路,尝试以最小的工作量完成一次查询条件的需求变更 1.UI收集查询 ...
- 【python】-- RabbitMQ 队列消息持久化、消息公平分发
RabbitMQ 队列消息持久化 假如消息队列test里面还有消息等待消费者(consumers)去接收,但是这个时候服务器端宕机了,这个时候消息是否还在? 1.队列消息非持久化 服务端(produc ...
- ArcGIS Server管理工具之批量发布动态地图服务工具.md
友好阅读链接:(http://swj.me/2015/08/26/batchPublishtools/) update0918: 修复了创建链接文件时而出错的bug 修复了在24011的警告已处理的情 ...
- python基础-第十一篇-11.2DOM为文档操作
文档对象模型(DOM)是一种用于HTML和XML文档的编程接口 节点类型 12种节点类型都有NodeType属性来表明节点类型 节点关系 <div id="t"> &l ...
- 前端开发 - jsBom
一.jsBom简介 jsBom = javascript browser object modelBOM指的是浏览器对象模型 Browser Object Model,它的核心就是浏览器. 二.Bom ...