《利用Python进行数据分析》笔记---第2章--MovieLens 1M数据集
写在前面的话:
实例中的所有数据都是在GitHub上下载的,打包下载即可。
地址是:http://github.com/pydata/pydata-book
还有一定要说明的:
我使用的是Python2.7,书中的代码有一些有错误,我使用自己的2.7版本调通。
# coding: utf-8
import pandas as pd
unames = ['user_id','gender','age','occupation','zip']
users = pd.read_table('D:\Source Code\pydata-book-master\ch02\movielens\users.dat', sep='::', header=None, names=unames)
rnmaes = ['user_id','movie_id','rating','timestamp']
ratings = pd.read_table('D:\Source Code\pydata-book-master\ch02\movielens\\ratings.dat', sep='::', header=None, names=rnmaes)
mnames = ['movie_id','title','genres']
movies = pd.read_table('D:\Source Code\pydata-book-master\ch02\movielens\movies.dat', sep='::', header=None, names=mnames)
users[:5]
ratings[:5]
movies[:5]
ratings
data = pd.merge(pd.merge(ratings, users), movies)
data.ix[0]
mean_rating = data.pivot_table('rating', index='title', columns='gender', aggfunc='mean')
mean_rating[:5]
ratings_by_title = data.groupby('title').size()
ratings_by_title[:10]
active_titles = ratings_by_title.index[ratings_by_title >= 250]
active_titles
mean_rating = mean_rating.ix[active_titles]
mean_rating
top_female_rating = mean_rating.sort_index(by='F', ascending=False)
top_female_rating[:10]
mean_rating['diff'] = mean_rating['M'] - mean_rating['F']
sorted_by_diff = mean_rating.sort_index(by='diff')
sorted_by_diff[:15]
sorted_by_diff[::-1][:15]
ratings_std_by_title = data.groupby('title')['rating'].std()
ratings_std_by_title = ratings_by_title.ix[active_titles]
ratings_std_by_title.order(ascending=False)[:10]
ratings_std_by_title
《利用Python进行数据分析》笔记---第2章--MovieLens 1M数据集的更多相关文章
- 《利用Python进行数据分析》第8章学习笔记
绘图和可视化 matplotlib入门 创建窗口和画布 fig = plt.figure() ax1 = fig.add_subplot(2,2,1) ax2 = fig.add_subplot(2, ...
- 《利用Python进行数据分析》第6章学习笔记
数据加载.存储与文件格式 读写文本格式的数据 逐块读取文本文件 read_xsv参数nrows=x 要逐块读取文件,需要设置chunksize(行数),返回一个TextParser对象. 还有一个ge ...
- 《利用Python进行数据分析》第4章学习笔记
NumPy基础:数组和矢量计算 NumPy的ndarray:一种多维数组对象 该对象是一个快速灵活的大数据集容器.你可以利用这种数组对整块数据执行一些数学运算,其语法跟标量元素之间的运算一样 列表转换 ...
- 《利用Python进行数据分析》第7章学习笔记
数据规整化:清理.转换.合并.重塑 合并数据集 pandas.merge pandas.concat combine_first 数据库风格的DataFrame合并 索引上的合并 join()实例方法 ...
- 《利用Python进行数据分析》第123章学习笔记
引言 1 列表推导式 records = [json.loads(line) for line in open(path)] 这是一种在一组字符串(或一组别的对象)上执行一条相同操作(如json.lo ...
- 《利用Python进行数据分析》第5章学习笔记
pandas入门 数据结构 Series Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成.仅由一组数据即可产生最简单的Serie ...
- 利用Python进行数据分析笔记-时间序列(时区、周期、频率)
此文对Python中时期.时间戳.时区处理等阐述十分清楚,特别值得推荐学习. 原文链接:https://blog.csdn.net/wuzlun/article/details/80287517
- 利用python进行数据分析--(阅读笔记一)
以此记录阅读和学习<利用Python进行数据分析>这本书中的觉得重要的点! 第一章:准备工作 1.一组新闻文章可以被处理为一张词频表,这张词频表可以用于情感分析. 2.大多数软件是由两部分 ...
- 《利用python进行数据分析》读书笔记 --第一、二章 准备与例子
http://www.cnblogs.com/batteryhp/p/4868348.html 第一章 准备工作 今天开始码这本书--<利用python进行数据分析>.R和python都得 ...
随机推荐
- 20145240《网络对抗》逆向及Bof基础实践
逆向及Bof基础实践 1.1 实践目标 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数,foo函数会简单回显任何用户输入的字符串. 该程序同时包 ...
- 20135320赵瀚青LINUX内核分析第一周学习笔记
赵瀚青原创作品转载请注明出处<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.概述 第一周的学习内容主 ...
- hadoop随手笔记
1.Hadoop Streaming 是为了方便不太熟悉java用户编写MR程序的工具.用户可以将任何可执行文件(C++)或者脚本(python,ruby)作为Mapper/Reducer, 提高了效 ...
- CSS控制滚动条的样式
到今天(2018年10月25日)为止, 这还是chrome上的一个实验性特性: ::-webkit-scrollbar{width:4px;height:4px;} ::-webkit-scrollb ...
- Union 和Union all的区别
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序: Union All:对两个结果集进行并集操作,包括重复行,不进行排序: 例如: select employee_id,jo ...
- 数据结构(十一)B树
之前的二叉排序树,平衡二叉树都是基于二叉树的实现,但是在搜索过程中,效率和树的深度有关,所以就想到把二叉树改为多叉树,B树和B+树都基于多叉树的实现 多路查找树 B树 定义 应用场景 B+树 ...
- Chrome好用的插件:WhatRuns 查看网站使用的技术
Chrome好用的插件:WhatRuns 查看网站使用的技术 这是一款免费的Chrome扩展程序,使用很简单. chrome安装这个插件之后,打开要检测的网站,然后点击WhatRuns 的图标,就开始 ...
- 算数基本定理 - nefu 118
算数基本定理 每个大于1的正整数都可以被唯一分解为素数的成绩,在乘积中的素因子按照非降序排列 a = p1^a1 * p2^a2 * ... pn^an; b = p1^b1 * p2^b2 * .. ...
- javascript 跨域访问
JavaScript出于安全方面的考虑,不允许跨域调用其他页面的对象.因为同源策略的限制,a.com 域名下的js无法操作b.com或是c.a.com域名下的对象. 下表给出了相对 http://si ...
- Grunt Part 1
Grunt Part 1 Objectives and Outcomes In this exercise, you will learn to use Grunt, the task runner. ...