bzoj 1023: [SHOI2008]cactus仙人掌图 2125: 最短路 4728: 挪威的森林 静态仙人掌上路径长度的维护系列
%%% http://immortalco.blog.uoj.ac/blog/1955
一个通用的写法是建树,对每个环建一个新点,去掉环上的边,原先环上每个点到新点连边,边权为点到环根的最短/长路长度
1023 求仙人掌直径
树形dp,维护每个点向下的最长和次长路径长度,对原有的点直接更新答案,对新点可以把对应环上的点取出,倍长,破环成链,并用单调队列正反各扫一次
#include<cstdio>
char buf[],*ptr=buf-;
int _(){
int x=,c=*++ptr;
while(c<)c=*++ptr;
while(c>)x=x*+c-,c=*++ptr;
return x;
}
const int N=;
int es[N],enx[N],ev[N],e0[N],e1[N],ep=;
int dfn[N],low[N],tk=,ss[N],sp=,os[N],op,q[N],ql,qr;
int n,m,D,idp,ans=,f1[N],f2[N];
void ae(int*e,int a,int b,int c){
es[ep]=b;enx[ep]=e[a];ev[ep]=c;e[a]=ep++;
es[ep]=a;enx[ep]=e[b];ev[ep]=c;e[b]=ep++;
}
int min(int a,int b){return a<b?a:b;}
void maxs(int&a,int b){if(a<b)a=b;}
void maxs(int&a,int&b,int c){
if(a<=c)b=a,a=c;
else if(b<c)b=c;
}
void tj(int w){
dfn[w]=low[w]=++tk;
for(int i=e0[w];i;i=enx[i]){
int u=es[i];
if(!u)continue;
es[i^]=;
if(!dfn[u]){
ss[++sp]=u;
tj(u);
if(ss[sp]==u)--sp,ae(e1,w,u,);
}else if((low[w]=min(low[w],dfn[u]))==dfn[u]){
op=;
while(sp&&dfn[ss[sp]]>dfn[u])os[++op]=ss[sp--];
ae(e1,u,++idp,);
for(int j=;j<=op;++j)ae(e1,idp,os[j],min(j,op+-j));
}
}
}
void dfs(int w,int pa){
for(int i=e1[w];i;i=enx[i]){
int u=es[i];
if(u==pa)continue;
dfs(u,w);
maxs(f1[w],f2[w],f1[u]+ev[i]);
}
if(w<=n)maxs(ans,f1[w]+f2[w]);
else{
op=;
for(int i=e1[w];i;i=enx[i]){
int u=es[i];
if(u!=pa)os[++op]=u;
}
os[++op]=pa;
D=op>>;
ql=,qr=;
for(int i=;i<=D;++i)os[op+i]=os[i];
op+=D;
for(int i=;i<=op;++i){
while(ql<=qr&&q[ql]+D<i)++ql;
if(ql<=qr)maxs(ans,f1[os[q[ql]]]+f1[os[i]]-q[ql]+i);
while(ql<=qr&&f1[os[q[qr]]]-q[qr]<=f1[os[i]]-i)--qr;
q[++qr]=i;
}
ql=,qr=;
for(int i=op;i;--i){
while(ql<=qr&&q[ql]-D>i)++ql;
if(ql<=qr)maxs(ans,f1[os[q[ql]]]+f1[os[i]]+q[ql]-i);
while(ql<=qr&&f1[os[q[qr]]]+q[qr]<=f1[os[i]]+i)--qr;
q[++qr]=i;
}
}
}
int main(){
fread(buf,,sizeof(buf),stdin);
idp=n=_();m=_();
for(int i=,c,a,b;i<m;++i){
c=_();
a=_();
for(int j=;j<c;++j){
b=_();
ae(e0,a,b,);
a=b;
}
}
tj();
dfs(,);
printf("%d",ans);
return ;
}
2125 多次询问仙人掌上两点间最短路
任意两点a,b间距离分情况考虑,设c=lca(a,b),若c是原有的点,则距离为树上a,b的距离dis(a,b),否则设x,y分别为a,b到c的路径上与c最近的点,则距离为dis(a,x)+dis(b,y)+环上x,y间的距离
倍增或链剖求一下lca再用前缀和特判一下环上情况
#include<cstdio>
#include<algorithm>
char buf[],*ptr=buf-;
int _(){
int x=,c=*++ptr;
while(c<)c=*++ptr;
while(c>)x=x*+c-,c=*++ptr;
return x;
}
const int N=;
int n,m,q;
int es[N],enx[N],ev[N],e0[],e1[],ep=,ss[],sp=,idp,os[],op,d1[],d2[];
int dfn[],low[],tk=;
void ae(int*e,int a,int b,int c){
es[ep]=b;enx[ep]=e[a];ev[ep]=c;e[a]=ep++;
es[ep]=a;enx[ep]=e[b];ev[ep]=c;e[b]=ep++;
}
int min(int a,int b){return a<b?a:b;}
void f0(int w){
dfn[w]=low[w]=++tk;
for(int i=e0[w];i;i=enx[i]){
int u=es[i];
if(!u)continue;
if(!dfn[u]){
ss[++sp]=i;
es[i^]=;
f0(u);
low[w]=min(low[w],low[u]);
if(ss[sp]==i)--sp,ae(e1,w,u,ev[i]);
}else if((low[w]=min(low[w],dfn[u]))==dfn[u]){
++idp;op=;
ae(e1,idp,u,);
op=;
int s1=ev[i],s2=;
while(sp&&dfn[es[ss[sp]]]>dfn[u]){
int e=ss[sp--];
os[op++]=e;
s2+=ev[e];
}
for(int p=;p<op;++p){
int e=os[p];
ae(e1,idp,es[e],min(d1[es[e]]=s1,s2));
d2[es[e]]=s1+s2;
s1+=ev[e],s2-=ev[e];
}
}
}
}
int fa[][],dep[],Dep[];
void f1(int w,int pa){
fa[][w]=pa;
for(int i=e1[w];i;i=enx[i]){
int u=es[i];
if(u==pa)continue;
dep[u]=dep[w]+;
Dep[u]=Dep[w]+ev[i];
f1(u,w);
}
}
int main(){
fread(buf,,sizeof(buf),stdin);
n=_();m=_();q=_();
idp=n;
for(int i=,a,b,c;i<=m;++i){
a=_();b=_();c=_();
ae(e0,a,b,c);
}
f0();
f1(,);
for(int i=;i<;++i)for(int j=;j<=idp;++j)fa[i][j]=fa[i-][fa[i-][j]];
for(int i=,a,b,ans;i<q;++i){
a=_();b=_();
if(dep[a]<dep[b])std::swap(a,b);
ans=Dep[a]+Dep[b];
for(int d=,s=dep[a]-dep[b];d<;++d)if(s>>d&)a=fa[d][a];
if(a==b)ans-=Dep[a]*;
else{
for(int d=;~d;--d)if(fa[d][a]!=fa[d][b])a=fa[d][a],b=fa[d][b];
if(fa[][a]<=n)ans-=Dep[fa[][a]]*;
else{
ans-=Dep[a]+Dep[b];
int s=d1[a]-d1[b];
if(s<)s=-s;
ans+=min(s,d2[a]-s);
}
}
printf("%d\n",ans);
}
return ;
}
4728 带加点、加环操作维护仙人掌最长简单路径
对每条路径,路径上的点不会比两端更晚加入,所以可以离线处理
对新建的树点分治,分别考虑当前分治中心对应的子树(由于根改变,新边权要重新计算),若分治中心为环,则维护环上的前缀max/后缀max(由于环上两点间有两种路径,要分别维护),否则维护每个相邻点方向的最长路径
bzoj 1023: [SHOI2008]cactus仙人掌图 2125: 最短路 4728: 挪威的森林 静态仙人掌上路径长度的维护系列的更多相关文章
- bzoj 1023: [SHOI2008]cactus仙人掌图 tarjan缩环&&环上单调队列
1023: [SHOI2008]cactus仙人掌图 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1141 Solved: 435[Submit][ ...
- 【刷题】BZOJ 1023 [SHOI2008]cactus仙人掌图
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的 ...
- BZOJ 1023: [SHOI2008]cactus仙人掌图 | 在仙人掌上跑DP
题目: 求仙人掌直径 http://www.lydsy.com/JudgeOnline/problem.php?id=1023 题解: 首先给出仙人掌的定义:满足所有的边至多在一个环上的无向联通图 我 ...
- bzoj 1023 [SHOI2008]cactus仙人掌图 ( poj 3567 Cactus Reloaded )——仙人掌直径模板
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1023 http://poj.org/problem?id=3567 因为lyd在讲课,所以有 ...
- bzoj 1023: [SHOI2008]cactus仙人掌图
这道题是我做的第一道仙人掌DP,小小纪念一下…… 仙人掌DP就是环上的点环状DP,树上的点树上DP.就是说,做一遍DFS,DFS的过程中处理出环,环上的点先不DP,先把这些换上的点的后继点都处理出来, ...
- BZOJ.1023.[SHOI2008]cactus仙人掌图(DP)
题目链接 类似求树的直径,可以用(类似)树形DP求每个点其子树(在仙人掌上就是诱导子图)最长链.次长链,用每个点子节点不同子树的 max{最长链}+max{次长链} 更新答案.(不需要存次长链,求解过 ...
- bzoj 1023: [SHOI2008]cactus仙人掌图【tarjan+dp+单调队列】
本来想先求出点双再一个一个处理结果写了很长发现太麻烦 设f[u]为u点向下的最长链 就是再tarjan的过程中,先照常处理,用最长儿子链和次长儿子链更新按ans,然后处理以这个点为根的环,也就是这个点 ...
- 1023: [SHOI2008]cactus仙人掌图 - BZOJ
Description如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回路 ...
- 【BZOJ】1023: [SHOI2008]cactus仙人掌图 静态仙人掌(DFS树)
[题意]给定仙人掌图(每条边至多在一个简单环上),求直径(最长的点对最短路径).n<=50000,m<=10^7. [算法]DFS树处理仙人掌 [题解]参考:仙人掌相关问题的处理方法(未完 ...
随机推荐
- AOP的Advice
@Before 方法执行之前执行 @AfterReturning 方法正常执行完成后执行 @AfterThrowing 抛出任何异常之后执行 @After 就是相当于finally,它会将你的方法t ...
- 12.18 微信扫码获取openid与登陆
官方文档: https://open.weixin.qq.com/ 1.先获取code 1-1 配置项目配置文件 wechat: mpAppId: wxd898fcb01713c658 mpAppSe ...
- 208.11 RF test
1) filter (not related); 2) Crystal (in progress); 3) IC; 4) Antenna. (not related) The three most ...
- Linux系统在启动过程中启动级别发生错误的解决办法
一.系统启动级别一共有六个: 0:系统停机模式,系统不可以正常启动 1:单用户模式, root权限,用于系统的维护,禁止远程登陆 2:多用户模式,没有NFS网络支持 3:完整的多用户文本模式,有NFS ...
- js 删除数组的指定元素
//为数组对象增加相应的的方法,直接调用数组的removeByValue方法即可删除指定元素 Array.prototype.removeByValue = function (val) { for ...
- Android Studio 问题锦集【持续更新】
想必,大家在使用Android Studio(后面简称AS)的过程中会遇到各种各样的问题,现在,我也来谈谈我在使用AS过程中遇到的错误. 1.Plugin with id 'com.android.a ...
- 添加courses模块
startapp courses from django.db import models from datetime import datetime # Create your models her ...
- js的事件循环机制和任务队列
上篇讲异步的时候,提到了同步队列和异步队列的说法,其实只是一种形象的称呼,分别代表主线程中的任务和任务队列中的任务,那么此篇我们就来详细探讨这两者. 一.来张图感受一下 如果看完觉得一脸懵逼,请继续往 ...
- TeamTalk源码分析(十一) —— pc客户端源码分析
--写在前面的话 在要不要写这篇文章的纠结中挣扎了好久,就我个人而已,我接触windows编程,已经六七个年头了,尤其是在我读研的三年内,基本心思都是花在学习和研究windows程序上 ...
- XOR Queries(莫队+trie)
题目链接: XOR Queries 给出一个长度为nn的数组CC,回答mm个形式为(L, R, A, B)(L,R,A,B)的询问,含义为存在多少个不同的数组下标k \in [L, R]k∈[L,R] ...