【2018.06.26NOIP模拟】T1纪念碑square


题目描述

2034年,纪念中学决定修建校庆100周年纪念碑,作为杰出校友的你被找了过来,帮校方确定纪念碑的选址。

纪念中学的土地可以看作是一个长为 n,宽为 m 的矩形。它由 n*m 个 1*1 的正方形组成,其中左下角的正方形的坐标为(1,1),右上角的正方形的坐标为(n,m)。其中有一些土地已经被用来修建建筑物,每一幢建筑物都可以看做是一个左下角为(x1,y1),右上角为(x2,y2)的矩形。

纪念碑可以看作是一个正方形。校方希望你找出一块最大的正方形区域供他们参考。

输入格式

每一组数据的第一行包含三个整数 n,m 和 p ,分别表示学校的长,宽以及建筑物的数量。

接下来的 p 行,每行包含四个整数 x1,y1,x2,y2,分别表示每一幢建筑物左下角以及右上角的坐标。

输出格式

输出一个数,表示可能的最大边长。

输入

13 5 8

8 4 10 4

4 3 4 4

10 2 12 2

8 2 8 4

2 4 6 4

10 3 10 4

12 3 12 4

2 2 4 2

输出

3

备注

【数据范围】

对于 30% 的数据,p≤1000。

对于 70% 的数据,p≤30000。

对于 100% 的数据,p≤400000;m,n≤1000000。


一开始想的是用什么单调队列什么的维护一下最大值,但后来发现如果一块空间是密闭的是修改不到的,然后这题就暴零了

正解如下:

我们可以维护两个指针l和r,记录当前在x轴上的范围

用差分的思想,把一个矩形拆成最左边的最右边的两条线段

然后我们用一颗线段树维护当前y轴上的最长连续空格maxs

当r-l+1>maxs,将l向右移动,同时记录线段的加入和删除

然后时间复杂度是O(nlog(n))" role="presentation">O(nlog(n))O(nlog(n)),又因为我们发现这道题没有查询函数,所以我们并不用下传标记,直接在修改的时候就可以向上更新答案了


#include<bits/stdc++.h>
using namespace std;
#define LD (o<<1)
#define RD ((o<<1)|1)
#define N 1000010
#define M 4000010
int n,m,p;
int x[2][N],y[2][N];
int tag[M],l[M],r[M],ls[M],rs[M],maxs[M];
vector<int> add[N],del[N];
void pushup(int o){
if(tag[o]){ls[o]=rs[o]=maxs[o]=0;return;}
if(l[o]==r[o]){ls[o]=rs[o]=maxs[o]=1;return;}
ls[o]=ls[LD]+(ls[LD]==r[LD]-l[LD]+1)*ls[RD];
rs[o]=rs[RD]+(rs[RD]==r[RD]-l[RD]+1)*rs[LD];
maxs[o]=max(rs[LD]+ls[RD],max(maxs[LD],maxs[RD]));
}
void build(int o,int ll,int rr){
l[o]=ll;r[o]=rr;
ls[o]=rs[o]=maxs[o]=rr-ll+1;
tag[o]=0;
if(ll==rr)return;
int mid=(ll+rr)>>1;
build(LD,ll,mid);
build(RD,mid+1,rr);
}
void modify(int o,int ll,int rr,int ql,int qr,int val){
if(ql<=ll&&rr<=qr){tag[o]+=val;pushup(o);return;}
int mid=(l[o]+r[o])>>1;
if(ql<=mid)modify(LD,ll,mid,ql,qr,val);
if(mid<qr)modify(RD,mid+1,rr,ql,qr,val);
pushup(o);
}
void out_put(int o){
cout<<o<<" "<<l[o]<<" "<<r[o]<<" "<<maxs[o]<<endl;
if(l[o]==r[o])return;
out_put(LD);
out_put(RD);
}
int main(){
// freopen("square.in","r",stdin);
// freopen("square.out","w",stdout);
scanf("%d%d%d",&n,&m,&p);
for(int i=1;i<=p;i++){
scanf("%d%d%d%d",&x[0][i],&y[0][i],&x[1][i],&y[1][i]);
add[x[0][i]].push_back(i);
del[x[1][i]].push_back(i);
}
build(1,1,m);
int ans=0,l=1,r=1;
while(r<=n){
for(int it=0;it<add[r].size();it++)
modify(1,1,m,y[0][add[r][it]],y[1][add[r][it]],1);
ans=max(ans,min(maxs[1],r-l+1));
while(maxs[1]<r-l+1){
for(int it=0;it<del[l].size();it++)
modify(1,1,m,y[0][del[l][it]],y[1][del[l][it]],-1);
l++;
}
r++;
// out_put(1);
}
printf("%d",ans);
return 0;
}

【2018.06.26NOIP模拟】T1纪念碑square 【线段树】*的更多相关文章

  1. 【2018.06.26NOIP模拟】T3节目parade 【支配树】*

    [2018.06.26NOIP模拟]T3节目parade 题目描述 学校一年一度的学生艺术节开始啦!在这次的艺术节上总共有 N 个节目,并且总共也有 N 个舞台供大家表演.其中第 i 个节目的表演时间 ...

  2. 【2018.06.26NOIP模拟】T2号码bachelor 【数位DP】*

    [2018.06.26NOIP模拟]T2号码bachelor 题目描述 Mike 正在在忙碌地发着各种各样的的短信.旁边的同学 Tom 注意到,Mike 发出短信的接收方手机号码似乎都满足着特别的性质 ...

  3. 2018.06.26 NOIP模拟 纪念碑(线段树+扫描线)

    题解: 题目背景 SOURCE:NOIP2015−GDZSJNZXSOURCE:NOIP2015-GDZSJNZXSOURCE:NOIP2015−GDZSJNZX(难) 题目描述 2034203420 ...

  4. 2018.10.26 NOIP模拟 图(最小生成树+线段树合并)

    传送门 首先最开始说的那个一条路径的权值就是想告诉你两个点之间的贡献就是瓶颈边的权值. 那么肯定要用最小生成树算法. 于是我考场上想了30min+30min+30min+的树形dpdpdp 发现转移是 ...

  5. 2018.10.02 NOIP模拟 序列维护(线段树+广义欧拉定理)

    传送门 一道比较好的线段树. 考试时线性筛打错了于是弃疗. 60分暴力中有20分的快速幂乘爆了于是最后40分滚粗. 正解并不难想. 每次区间加打懒标记就行了. 区间查询要用到广义欧拉定理. 我们会发现 ...

  6. Codeforces 280D k-Maximum Subsequence Sum [模拟费用流,线段树]

    洛谷 Codeforces bzoj1,bzoj2 这可真是一道n倍经验题呢-- 思路 我首先想到了DP,然后矩阵,然后线段树,然后T飞-- 搜了题解之后发现是模拟费用流. 直接维护选k个子段时的最优 ...

  7. 2018.10.30 bzoj4942: [Noi2017]整数(线段树压位)

    传送门 直接把修改的数拆成logloglog个二进制位一个一个修改是会TLETLETLE的. 因此我们把303030个二进制位压成一位储存在线段树里面. 然后维护区间中最靠左二进制位不为0/1的下标. ...

  8. 2018.07.08 hdu6183 Color it(线段树)

    Color it Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others) Proble ...

  9. 【10.6校内测试】【小模拟】【hash+线段树维护覆盖序列】

    一开始看到题就果断跳到T2了!!没想到T2才是个大坑,浪费了两个小时QAQ!! 就是一道小模拟,它怎么说就怎么走就好了! 为什么要用这么多感叹号!!因为统计答案要边走边统计!!如果每个数据都扫一遍20 ...

随机推荐

  1. Extjs 分页多选的实现

    Extjs 版本 6.X 单页面的多选,没有任何问题. 直接使用 Grid的配置项进行绑定即可获取: xtype: 'grid', bind: { selection: '{checkedRecord ...

  2. vue2.0--vue-router路由

    一.vue-router如何进行参数传递 1.name  $route.name 通过在路由router/index.js中配置路由时定义的name属性来传递 ① 有一个页面components/he ...

  3. Spark 基于物品的协同过滤算法实现

    J由于 Spark MLlib 中协同过滤算法只提供了基于模型的协同过滤算法,在网上也没有找到有很好的实现,所以尝试自己实现基于物品的协同过滤算法(使用余弦相似度距离) 算法介绍 基于物品的协同过滤算 ...

  4. 数据库建表char(10)和VARCHAR(10)

    1.CHAR的长度是固定的,而VARCHAR2的长度是可以变化的, 比如,存储字符串“abc",对于CHAR (10),表示你存储的字符将占10个字节(包括7个空字符),而同样的VARCHA ...

  5. led,key通用IO的端口

    1 注意通用IO端口, GPBCON 只能控制一个GPBDAT位(对应的位),而GPBUP可以使能GPBCON.

  6. Python中 如何使用telnet 检测端口是否通

    import tn=telnetlib.Telnet(host,port)不报异常则该端口是通的,可结合try进行使用

  7. HDU 4696 Answers (脑补+数形结合)

    题意 给一个图,每个点的出度为1,每个点的权值为1或者2.给Q个询问,问是否能找到一条路径的权值和M. 思路 由于每个点的出度为1,所以必然存在环.又因为c[i]只能取1或者2,可以组成任意值,所以只 ...

  8. msys git 安装配置、git命令行使用

    安装 .安装msys git客户端程序 .打开git bash,命令ssh-keygen –C “admin@test.cn “ –t rsa .复制C:\Users\felix\.ssh\id_rs ...

  9. 由浅入深了解EventBus:(二)

    概念 深入学习EventBus框架,就必须理解EventBus的相关原理和一些概念: Subscribe 在EventBus框架中,消息的处理接收方法必须要“@Subscribe”注解来进行标注: p ...

  10. Prism5.0开发人员指南内容(纯汉语版)

    Prism指南包含以下内容: 下载并安装Prism Prism5.0新内容 介绍 初始化应用程序 组件间的依赖管理 模块化应用程序开发 实现MVVM模式 进击的MVVM 组合式用户界面 导航 松耦合组 ...