Description

1tthinking随便地画了一些圆. ftiasch认为这些圆有交集(面积非零)的可能性不大。因为他实在画了太多圆,所以你被请来判断是否存在交集。

Input

第1行,一个整数 N (1 ≤ N ≤ 105), 圆的数量。

第2到 N 行: 三个整数 Xi, Yi, Ri, 圆心在 (Xi, Yi), 半径为 Ri 的圆。

Output

如果存在面积非零的交集,则输出 "YES",否则输出 "NO"。

首先可以确定如果有相交,x坐标一定在区间[max(x[i]-r[i]),min(x[i]+r[i])]内

取这个区间中点M,在直线x=M上,若所有圆在这条线上有不为0的交集则可以判断存在面积非0的交集

否则找出一对圆在x=M上不相交,若两圆相离/相切则可以判断无解,否则把区间缩小到这两个圆交集所在的x坐标区间递归计算

每次缩小区间至少缩小一半,且圆的坐标和半径是整数,因此复杂度是可以保证的

#include<cstdio>
#include<cmath>
#include<cstdlib>
using namespace std;
typedef double ld;
const ld _0=1e-6l;
const int N=;
int n;
ld x[N],y[N],r[N];
ld L,R;
int read(){
int x=,c=getchar(),f=;
while(c>||c<){if(c=='-')f=-;c=getchar();}
while(c>&&c<)x=x*+c-,c=getchar();
return x*f;
}
void get(int id,ld X,ld&a,ld&b){
X-=x[id];
X=sqrt(r[id]*r[id]-X*X);
a=y[id]-X;
b=y[id]+X;
}
bool chk(ld X,int a,int b){
if(fabs(X-x[a])>r[a]||fabs(X-x[b])>r[b])return ;
ld a1,a2,b1,b2;
get(a,X,a1,a2);
get(b,X,b1,b2);
return a2>b1&&a1<b2;
}
void chk(int a,int b){
ld xd=x[b]-x[a],yd=y[b]-y[a];
ld d=sqrt(xd*xd+yd*yd);
if(d+_0>r[a]+r[b]){
puts("NO");
exit();
}
ld s=(r[a]+r[b]+d)/.;
ld h=*sqrt(s*(s-r[a])*(s-r[b])*(s-d))/d;
ld m=x[a]+xd*sqrt(r[a]*r[a]-h*h)/d,c=h*fabs(yd)/d;
if(d*d+r[a]*r[a]<r[b]*r[b])m=x[a]*-m;
ld lx=m-c,rx=m+c;
if(lx>x[a]-r[a]&&chk(x[a]-r[a]+_0,a,b))lx=x[a]-r[a];
if(lx>x[b]-r[b]&&chk(x[b]-r[b]+_0,a,b))lx=x[b]-r[b];
if(rx<x[a]+r[a]&&chk(x[a]+r[a]-_0,a,b))rx=x[a]+r[a];
if(rx<x[b]+r[b]&&chk(x[b]+r[b]-_0,a,b))rx=x[b]+r[b];
if(lx>L)L=lx;
if(rx<R)R=rx;
}
int main(){
n=read();
for(int i=;i<n;i++){
x[i]=read();
y[i]=read();
r[i]=read();
}
L=x[]-r[],R=x[]+r[];
for(int i=;i<n;i++){
if(L<x[i]-r[i])L=x[i]-r[i];
if(R>x[i]+r[i])R=x[i]+r[i];
}
while(){
if(L+_0>R){
puts("NO");
return ;
}
ld M=(L+R)/.;
ld y1,y2,a1,a2;
get(,M,y1,y2);
for(int i=;i<n;i++){
get(i,M,a1,a2);
if(a1>y1)y1=a1;
if(a2<y2)y2=a2;
if(y1+_0>y2){
for(int j=;j<i;j++){
get(j,M,y1,y2);
if(y1>=a2-_0||y2<=a1+_0){
chk(i,j);
goto re;
}
}
}
}
puts("YES");
return ;
re:;
}
}

bzoj2289: 【POJ Challenge】圆,圆,圆的更多相关文章

  1. bzoj 2295: 【POJ Challenge】我爱你啊

    2295: [POJ Challenge]我爱你啊 Time Limit: 1 Sec  Memory Limit: 128 MB Description ftiasch是个十分受女生欢迎的同学,所以 ...

  2. 【链表】BZOJ 2288: 【POJ Challenge】生日礼物

    2288: [POJ Challenge]生日礼物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 382  Solved: 111[Submit][S ...

  3. BZOJ2288: 【POJ Challenge】生日礼物

    2288: [POJ Challenge]生日礼物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 284  Solved: 82[Submit][St ...

  4. BZOJ2293: 【POJ Challenge】吉他英雄

    2293: [POJ Challenge]吉他英雄 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 80  Solved: 59[Submit][Stat ...

  5. BZOJ2287: 【POJ Challenge】消失之物

    2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 254  Solved: 140[Submit][S ...

  6. BZOJ2295: 【POJ Challenge】我爱你啊

    2295: [POJ Challenge]我爱你啊 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 126  Solved: 90[Submit][Sta ...

  7. BZOJ2296: 【POJ Challenge】随机种子

    2296: [POJ Challenge]随机种子 Time Limit: 1 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 114  Solv ...

  8. BZOJ2292: 【POJ Challenge 】永远挑战

    2292: [POJ Challenge ]永远挑战 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 513  Solved: 201[Submit][ ...

  9. BZOJ 2287: 【POJ Challenge】消失之物( 背包dp )

    虽然A掉了但是时间感人啊.... f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数. 丢了第 i 个, 要 ...

  10. 2292: 【POJ Challenge 】永远挑战

    2292: [POJ Challenge ]永远挑战 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 553  Solved: 230[Submit][ ...

随机推荐

  1. MySql配置方法,批处理进行MySql配置

    @echo 注意右击管理员运行 @pause @echo .添加环境变量 @echo .my.ini中添加如下配置 @echo [mysqld] @echo basedir=C:\Program Fi ...

  2. LCS (nlogn)

    最长上升子序列的O(n*logn)算法分析如下: 先回顾经典的O(n^2)的动态规划算法,设a[t]表示序列中的第t个数,dp[t]表示从1到t这一段中以t结尾的最长上升子序列的长度,初始时设dp [ ...

  3. 作业 for liao

    AD620 芯片 93 dB min Common-Mode Rejection Ratio (G = 10) 0.28 mV p-p Noise (0.1 Hz to 10 Hz) THEORY O ...

  4. magic矩阵

    魔方矩阵 魔方矩阵是有相同的行数和列数,并在每行每列.对角线上的和都相等.你能构造任何大小(除了2x2)的魔方矩阵. 1.历史       魔方又称幻方.纵横图.九宫图,最早记录于我国古代的洛书.据说 ...

  5. Chrome A标签的迁移错误:【Error loading page】

    在IE中经常使用A标签用来迁移,正确的写法是 <a href="001.html"></a>即可,不过在chrome上面可能会引发错误无法迁移. 比如用下面 ...

  6. PHP强制清除缓存

    在页面最顶端加上 <?phpheader("Expires: Mon, 26 Jul 1997 05:00:00 GMT");header("Last-Modifi ...

  7. Metasploit连接postgres数据库

    操作环境为Kali虚拟机 root@kali:~# apt-get install postgresql 启动服务 root@kali:~# service postgresql start [ ok ...

  8. 【NOIP2013】华容道

    看别人的代码然后被坑了一下午+一晚上,睡一觉第二天醒悟过来打表过了 果然打表才是正确的调试方法,跟踪什么的去屎(╯‵□′)╯︵┻━┻ 原题: 小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成 ...

  9. C# App.config 自定义 配置节 报错“配置系统未能初始化” 解决方法

    App.config,结果运行的时候出现了 "配置系统未能初始化" 的错误.找了半天才发现是下面的原因造成的: "如果配置文件中包含configSections元素,则c ...

  10. VGG-19 和 VGG-16 的 prototxt文件

    VGG-19 和 VGG-16 的 prototxt文件  VGG-19 和 VGG-16 的 prototxt文件 VGG-16:prototxt 地址:https://gist.github.co ...