HDU 2196Computer(树形DP)
给你一颗边带权值的树,求树上的每一点距离其最远的一个点的距离
比较典型的题了,主要方法是进行两次DFS,第一次DFS求出每一个点距离它的子树的最远距离和次远距离,然后第二次DFS从父节点传过来另一侧的树上的距离它的最远距离进行一次比较便可得出任意点的最远距离了
之所以需要记录最远和次远是为了辨别父节点的最远距离是否是根据自己得来,如果是的话应该选择父节点的次远距离,保证结果的准确性
//#pragma comment(linker,"/STACK:102400000,102400000")
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <ctime>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 1e8
#define inf (-((LL)1<<40))
#define lson k<<1, L, mid
#define rson k<<1|1, mid+1, R
#define mem0(a) memset(a,0,sizeof(a))
#define mem1(a) memset(a,-1,sizeof(a))
#define mem(a, b) memset(a, b, sizeof(a))
#define FOPENIN(IN) freopen(IN, "r", stdin)
#define FOPENOUT(OUT) freopen(OUT, "w", stdout)
template<class T> T CMP_MIN(T a, T b) { return a < b; }
template<class T> T CMP_MAX(T a, T b) { return a > b; }
template<class T> T MAX(T a, T b) { return a > b ? a : b; }
template<class T> T MIN(T a, T b) { return a < b ? a : b; }
template<class T> T GCD(T a, T b) { return b ? GCD(b, a%b) : a; }
template<class T> T LCM(T a, T b) { return a / GCD(a,b) * b; } //typedef __int64 LL;
//typedef long long LL;
const int MAXN = ;
const int MAXM = ;
const double eps = 1e-;
//const LL MOD = 1000000007; int N;
int head[MAXN], next[MAXM], tot;
int u[MAXM], v[MAXM], w[MAXM];
int fir[MAXN], sec[MAXN], ans[MAXN]; void addEdge(int U, int V, int W)
{
u[tot] = U;
v[tot] = V;
w[tot] = W;
next[tot] = head[U];
head[U] = tot;
tot ++;
} int dfs1(int x, int fa)
{
fir[x] = sec[x] = ;
for(int e = head[x]; e != -; e = next[e]) if(v[e] != fa)
{
int dis = dfs1(v[e], x) + w[e];
if(dis >= fir[x]) { sec[x] = fir[x]; fir[x] = dis; }
else if(dis > sec[x]) sec[x] = dis;
}
return fir[x];
} void dfs2(int x, int fa, int dis)
{
ans[x] = MAX(fir[x], dis);
for(int e = head[x]; e != -; e = next[e]) if(v[e] != fa)
{
int y = v[e];
if(fir[y] + w[e] == fir[x])
dfs2(y, x, MAX( dis, sec[x]) + w[e] );
else
dfs2(y, x, MAX( dis, fir[x]) + w[e] );
}
} int main()
{ while(~scanf("%d", &N))
{
tot = ;
mem1(head);
int V, W;
for(int i = ; i <= N; i ++)
{
scanf("%d %d", &V, &W);
addEdge(i, V, W);
addEdge(V, i, W);
}
dfs1(, );
dfs2(, , );
for(int i = ; i <= N; i ++ )
printf("%d\n", ans[i]);
}
return ;
}
HDU 2196Computer(树形DP)的更多相关文章
- hdu 4123 树形DP+RMQ
http://acm.hdu.edu.cn/showproblem.php? pid=4123 Problem Description Bob wants to hold a race to enco ...
- HDU 1520 树形dp裸题
1.HDU 1520 Anniversary party 2.总结:第一道树形dp,有点纠结 题意:公司聚会,员工与直接上司不能同时来,求最大权值和 #include<iostream> ...
- HDU 1561 树形DP入门
The more, The Better Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- HDU 2196树形DP(2个方向)
HDU 2196 [题目链接]HDU 2196 [题目类型]树形DP(2个方向) &题意: 题意是求树中每个点到所有叶子节点的距离的最大值是多少. &题解: 2次dfs,先把子树的最大 ...
- HDU 1520 树形DP入门
HDU 1520 [题目链接]HDU 1520 [题目类型]树形DP &题意: 某公司要举办一次晚会,但是为了使得晚会的气氛更加活跃,每个参加晚会的人都不希望在晚会中见到他的直接上司,现在已知 ...
- codevs 1380/HDU 1520 树形dp
1380 没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 回到问题 题目描述 Description Ural大学有N个职员 ...
- HDU 5834 [树形dp]
/* 题意:n个点组成的树,点和边都有权值,当第一次访问某个点的时候获得利益为点的权值 每次经过一条边,丢失利益为边的权值.问从第i个点出发,获得的利益最大是多少. 输入: 测试样例组数T n n个数 ...
- hdu 4267 树形DP
思路:先dfs一下,找出1,n间的路径长度和价值,回溯时将该路径长度和价值清零.那么对剩下的图就可以直接树形dp求解了. #include<iostream> #include<al ...
- hdu 4607 (树形DP)
当时比赛的时候我们找出来只要求出树的最长的边的节点数ans,如果要访问点的个数n小于ans距离直接就是n-1 如果大于的话就是(n-ans)*2+ans-1,当时求树的直径难倒我们了,都不会树形dp ...
- hdu 1520 (树形DP)
dp[i][0]表示i不参加 dp[i][1]表示i参加 简单的树形dp #include<stdio.h> #include<string.h> #define N 6100 ...
随机推荐
- mysql 调用带返回值的存储过程
存储过程: create procedure proc_t(out uname varchar(50),out upwd varchar(50),in uid int) BEGIN select na ...
- Android failed creating starting window
/***************************************************************************** * Android failed crea ...
- Java多线程-工具篇-BlockingQueue
前言: 在新增的Concurrent包中,BlockingQueue很好的解决了多线程中,如何高效安全“传输”数据的问题.通过这些高效并且线程安全的队列 类,为我们快速搭建高质量的多线程程序带来极大的 ...
- 五个JS经典面试题
1:Scope作用范围 1: (function() { 2: var a = b = 5; 3: })(); 4: 5: console.log(b); 什么会被打印在控制台上? 回答 上面的代码会 ...
- 将Tomcat注册为Windows服务
1.从官网http://tomcat.apache.org/下载Tomcat. 2.将Tomcat压缩文件解压到相应的路径下(例如E:\TomcatServer) 3.从bin目录下找到service ...
- 【LeetCode】101 - Symmetric Tree
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center). For e ...
- ref 参数
当使用ref 作为参数赋值时,ref 得需要初始化,就是在从新定义一下 参数的值,下面有列子: 在控制台中运行如下: //定义一个方法,两个参数 i和a . public static void ge ...
- Google软件测试
google测试相关的职位有三类:软件测试开发工程师.测试工程师以及测试工程经理. 软件测试开发工程师也是一个开发角色,只是工作重心在可测试性和通用测试框架上.他们参与设计评审,非常近距离地观察代码质 ...
- Android学习笔记-Dialog详解
1.对话框的使用 1.1AlertDialog的显示 简单对话框以及监听的设置:重点掌握三个按钮(也就是三上单词): PositiveButton(确认按钮);NeutralButton(忽略按钮) ...
- 25个CSS3 渐变和动画效果教程
随着最新版CSS3渐变和动画功能发布,Web开发者在开发的过程中有了更多的选择.实际上,已经有了一些替代的技术,目的都是使网站的建设变得简易,高效和快速.不过CSS3所提供的渐变功能有着显著的优点,特 ...