给你一颗边带权值的树,求树上的每一点距离其最远的一个点的距离

比较典型的题了,主要方法是进行两次DFS,第一次DFS求出每一个点距离它的子树的最远距离和次远距离,然后第二次DFS从父节点传过来另一侧的树上的距离它的最远距离进行一次比较便可得出任意点的最远距离了

之所以需要记录最远和次远是为了辨别父节点的最远距离是否是根据自己得来,如果是的话应该选择父节点的次远距离,保证结果的准确性

 //#pragma comment(linker,"/STACK:102400000,102400000")
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <ctime>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 1e8
#define inf (-((LL)1<<40))
#define lson k<<1, L, mid
#define rson k<<1|1, mid+1, R
#define mem0(a) memset(a,0,sizeof(a))
#define mem1(a) memset(a,-1,sizeof(a))
#define mem(a, b) memset(a, b, sizeof(a))
#define FOPENIN(IN) freopen(IN, "r", stdin)
#define FOPENOUT(OUT) freopen(OUT, "w", stdout)
template<class T> T CMP_MIN(T a, T b) { return a < b; }
template<class T> T CMP_MAX(T a, T b) { return a > b; }
template<class T> T MAX(T a, T b) { return a > b ? a : b; }
template<class T> T MIN(T a, T b) { return a < b ? a : b; }
template<class T> T GCD(T a, T b) { return b ? GCD(b, a%b) : a; }
template<class T> T LCM(T a, T b) { return a / GCD(a,b) * b; } //typedef __int64 LL;
//typedef long long LL;
const int MAXN = ;
const int MAXM = ;
const double eps = 1e-;
//const LL MOD = 1000000007; int N;
int head[MAXN], next[MAXM], tot;
int u[MAXM], v[MAXM], w[MAXM];
int fir[MAXN], sec[MAXN], ans[MAXN]; void addEdge(int U, int V, int W)
{
u[tot] = U;
v[tot] = V;
w[tot] = W;
next[tot] = head[U];
head[U] = tot;
tot ++;
} int dfs1(int x, int fa)
{
fir[x] = sec[x] = ;
for(int e = head[x]; e != -; e = next[e]) if(v[e] != fa)
{
int dis = dfs1(v[e], x) + w[e];
if(dis >= fir[x]) { sec[x] = fir[x]; fir[x] = dis; }
else if(dis > sec[x]) sec[x] = dis;
}
return fir[x];
} void dfs2(int x, int fa, int dis)
{
ans[x] = MAX(fir[x], dis);
for(int e = head[x]; e != -; e = next[e]) if(v[e] != fa)
{
int y = v[e];
if(fir[y] + w[e] == fir[x])
dfs2(y, x, MAX( dis, sec[x]) + w[e] );
else
dfs2(y, x, MAX( dis, fir[x]) + w[e] );
}
} int main()
{ while(~scanf("%d", &N))
{
tot = ;
mem1(head);
int V, W;
for(int i = ; i <= N; i ++)
{
scanf("%d %d", &V, &W);
addEdge(i, V, W);
addEdge(V, i, W);
}
dfs1(, );
dfs2(, , );
for(int i = ; i <= N; i ++ )
printf("%d\n", ans[i]);
}
return ;
}

HDU 2196Computer(树形DP)的更多相关文章

  1. hdu 4123 树形DP+RMQ

    http://acm.hdu.edu.cn/showproblem.php? pid=4123 Problem Description Bob wants to hold a race to enco ...

  2. HDU 1520 树形dp裸题

    1.HDU 1520  Anniversary party 2.总结:第一道树形dp,有点纠结 题意:公司聚会,员工与直接上司不能同时来,求最大权值和 #include<iostream> ...

  3. HDU 1561 树形DP入门

    The more, The Better Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  4. HDU 2196树形DP(2个方向)

    HDU 2196 [题目链接]HDU 2196 [题目类型]树形DP(2个方向) &题意: 题意是求树中每个点到所有叶子节点的距离的最大值是多少. &题解: 2次dfs,先把子树的最大 ...

  5. HDU 1520 树形DP入门

    HDU 1520 [题目链接]HDU 1520 [题目类型]树形DP &题意: 某公司要举办一次晚会,但是为了使得晚会的气氛更加活跃,每个参加晚会的人都不希望在晚会中见到他的直接上司,现在已知 ...

  6. codevs 1380/HDU 1520 树形dp

    1380 没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 回到问题 题目描述 Description Ural大学有N个职员 ...

  7. HDU 5834 [树形dp]

    /* 题意:n个点组成的树,点和边都有权值,当第一次访问某个点的时候获得利益为点的权值 每次经过一条边,丢失利益为边的权值.问从第i个点出发,获得的利益最大是多少. 输入: 测试样例组数T n n个数 ...

  8. hdu 4267 树形DP

    思路:先dfs一下,找出1,n间的路径长度和价值,回溯时将该路径长度和价值清零.那么对剩下的图就可以直接树形dp求解了. #include<iostream> #include<al ...

  9. hdu 4607 (树形DP)

    当时比赛的时候我们找出来只要求出树的最长的边的节点数ans,如果要访问点的个数n小于ans距离直接就是n-1 如果大于的话就是(n-ans)*2+ans-1,当时求树的直径难倒我们了,都不会树形dp ...

  10. hdu 1520 (树形DP)

    dp[i][0]表示i不参加 dp[i][1]表示i参加 简单的树形dp #include<stdio.h> #include<string.h> #define N 6100 ...

随机推荐

  1. 51nod1442 士兵的旅行

    裸网络流拆点就可以了... #include<cstdio> #include<cstring> #include<cctype> #include<algo ...

  2. 漫游Kafka实现篇之分布式

    Zookeeper节点标记 当路径中的元素包括在方括号里比如[xyz],则表示xyz表示的值是不固定的,每个可能的值都有一个Zookeeper节点.比如/topics/[topic]表示每个topic ...

  3. 封装sharedPreferences SettingsSPData

    /*************************************************************************** * 封装sharedPreferences S ...

  4. Maven 安装Jar包到本地仓库

    开始cmd: 例1: mvn install:install-file -DgroupId=Issues -DartifactId=beautyeye -Dversion=3.5 -Dpackagin ...

  5. Oracle 单实例 迁移到 RAC 实例 -- 使用RMAN 异机恢复

    Oracle 官网有关单实例迁移到RAC的一个步骤说明: How to Convert 10g Single-Instance database to 10g RAC using Manual Con ...

  6. MVC-READ5(asp.net web from PK asp.net MVC)

    webform: ViewState问题 页面生命周期 不能很好的分解关注点 对HTML操控受限 抽象不完全 可测试性弱

  7. arcgis for android 无法加载本地jpg影像解决办法

    因为jpg影像没有生成金子塔文件*.rrd 一个完整的JPG影像必须包括如下文件: K-50-96-(16).aux  辅助文件K-50-96-(16).jgw  坐标信息K-50-96-(16).j ...

  8. 计算器显示e-005什么意思

    计算器显示e-005什么意思 1e-005是科学表达式,即 =1e-5 =0.00001e+005就是乘以10的5次方 就是-1.4989*10^5 这是科学计数法(也叫指数计数法)   这是科学计数 ...

  9. css3.0新属性效果在ie下的解决方案(兼容性)

    css3.0增加的新属性,如投影.渐变.旋转.圆角等等!这些新标准属性在ie6.ie7.ie8浏览器版本里得不到很好的支持,相信ie以后的新版本也会支持这些新属性的.目前ie6.ie7.ie8浏览器不 ...

  10. vector.resize 与 vector.reserve的区别 .xml

    pre{ line-height:1; color:#9f1d66; background-color:#a0ffc0; font-size:16px;}.sysFunc{color:#5d57ff; ...