A Round Peg in a Ground Hole

Time Limit: 1000MS Memory Limit: 10000K

Total Submissions: 5684 Accepted: 1827

Description

The DIY Furniture company specializes in assemble-it-yourself furniture kits. Typically, the pieces of wood are attached to one another using a wooden peg that fits into pre-cut holes in each piece to be attached. The pegs have a circular cross-section and so are intended to fit inside a round hole.

A recent factory run of computer desks were flawed when an automatic grinding machine was mis-programmed. The result is an irregularly shaped hole in one piece that, instead of the expected circular shape, is actually an irregular polygon. You need to figure out whether the desks need to be scrapped or if they can be salvaged by filling a part of the hole with a mixture of wood shavings and glue.

There are two concerns. First, if the hole contains any protrusions (i.e., if there exist any two interior points in the hole that, if connected by a line segment, that segment would cross one or more edges of the hole), then the filled-in-hole would not be structurally sound enough to support the peg under normal stress as the furniture is used. Second, assuming the hole is appropriately shaped, it must be big enough to allow insertion of the peg. Since the hole in this piece of wood must match up with a corresponding hole in other pieces, the precise location where the peg must fit is known.

Write a program to accept descriptions of pegs and polygonal holes and determine if the hole is ill-formed and, if not, whether the peg will fit at the desired location. Each hole is described as a polygon with vertices (x1, y1), (x2, y2), … , (xn, yn). The edges of the polygon are (xi, yi) to (xi+1, yi+1) for i = 1 … n − 1 and (xn, yn) to (x1, y1).

Input

Input consists of a series of piece descriptions. Each piece description consists of the following data:

Line 1 < nVertices > < pegRadius > < pegX > < pegY >

number of vertices in polygon, n (integer)

radius of peg (real)

X and Y position of peg (real)

n Lines < vertexX > < vertexY >

On a line for each vertex, listed in order, the X and Y position of vertex The end of input is indicated by a number of polygon vertices less than 3.

Output

For each piece description, print a single line containing the string:

HOLE IS ILL-FORMED if the hole contains protrusions

PEG WILL FIT if the hole contains no protrusions and the peg fits in the hole at the indicated position

PEG WILL NOT FIT if the hole contains no protrusions but the peg will not fit in the hole at the indicated position

Sample Input

5 1.5 1.5 2.0

1.0 1.0

2.0 2.0

1.75 2.0

1.0 3.0

0.0 2.0

5 1.5 1.5 2.0

1.0 1.0

2.0 2.0

1.75 2.5

1.0 3.0

0.0 2.0

1

Sample Output

HOLE IS ILL-FORMED

PEG WILL NOT FIT

Source

Mid-Atlantic 2003

题意:给出一个多边形和一个圆,问是否是凸多边形,若是则再问圆是否在凸多边形内部。

1、判断是否是凸多边形

2、判断点是否在多边形内部

3、判断点到各边的距离是否大于等于半径

#include <iostream>
#include <cstdio>
#include <cmath>
#include <stack>
#include <algorithm>
using namespace std; const int INF = 0x3f3f3f3f; const double Pi = 3.141592654; const double eps = 1e-6; typedef struct node
{
double x;
double y;
} Point;
Point *p;
Point peg;
double pegR;
int n;
double dotdet(node a,node b,node c)//计算点积
{
return (b.x-a.x)*(c.x-a.x)+(b.y-a.y)*(c.y-a.y);
}
double det(double x1,double y1,double x2,double y2)
{
return x1*y2-x2*y1;
} double cross(Point a,Point b,Point c)//计算叉积
{
return det(b.x-a.x,b.y-a.y,c.x-a.x,c.y-a.y);
} double Dis(Point a,Point b)//计算距离
{
return sqrt((b.x-a.x)*(b.x-a.x)+(b.y-a.y)*(b.y-a.y));
} int precision(double s)//精度控制
{
if(fabs(s)<=eps)
{
return 0;
}
return s>0?1:-1;
} bool JudgeConvex()//判断是否是凸包
{
int temp=0;
int ans;
for(int i=0; i<n; i++)
{
ans=precision(cross(p[i],p[i+1],p[i+2]));
if(!temp)
{
temp=ans;
}
if(temp*ans<0)//如果不是同一的角度则不是凸包
{
return false;
}
}
return true;
}
double CalAngle(node a,node b)//计算角度
{
return acos((dotdet(peg,a,b))/(Dis(peg,a)*(Dis(peg,b))));
}
bool JudgeCenter()//判断圆心与凸包的关系
{
double Angle=0;
int ans;
for(int i=0; i<n; i++)
{
ans=precision(cross(peg,p[i],p[i+1]));//由叉积判断角度的方向.
if(ans>=0)
{
Angle+=CalAngle(p[i],p[i+1]);
}
else
{
Angle-=CalAngle(p[i],p[i+1]);
}
}
Angle=fabs(Angle);
if(precision(Angle)==0)//如果环绕角等于0说明圆心在凸包外侧
{
return false;
}
else if(precision(Angle-Pi)==0)//如果环绕角为180,圆心在凸包的边上(不包括顶点);
{
if(precision(pegR)==0)//只有半径为0的时候才能成立
return true;
}
else if(precision(Angle-2*Pi)==0)//如果环绕角为360,圆心在凸包的里面
{
return true;
}
else
{
if(precision(pegR)==0)//如果环绕角为0-360之间的角度则圆心在凸包的顶点所以只有半径为0的时候才符合
{
return true;
}
}
return false;
} bool JudgeRadius()//判断半径是不是符合:算出圆心到各边的距离和半径进行比较,如果所有的距离都小于半径,则半径是符合的.
{
for(int i=0;i<n;i++)
{
int k=precision(fabs(cross(peg,p[i],p[i+1])/Dis(p[i],p[i+1]))-pegR);
if(k<0)//如果距离小于半径则不符合
{
return false;
}
}
return true;
} int main()
{
while(scanf("%d",&n)&&n>=3)
{
p =new Point[n+10];
scanf("%lf %lf %lf",&pegR,&peg.x,&peg.y);
for(int i=1; i<=n; i++)
{
scanf("%lf %lf",&p[i].x,&p[i].y);
}
p[0]=p[n];
p[n+1]=p[1];
if(!JudgeConvex())
{
printf("HOLE IS ILL-FORMED\n");
}
else
{
bool flag1=JudgeCenter();
bool flag2=JudgeRadius();
if(flag1&&flag2)
{
printf("PEG WILL FIT\n");
}
else
{
printf("PEG WILL NOT FIT\n");
}
}
}
return 0;
}
/*
HOLE IS ILL-FORMED
PEG WILL NOT FIT
PEG WILL FIT
PEG WILL NOT FIT
PEG WILL FIT
PEG WILL FIT
PEG WILL NOT FIT
PEG WILL FIT
PEG WILL NOT FIT
PEG WILL NOT FIT
PEG WILL NOT FIT
PEG WILL FIT
PEG WILL NOT FIT
HOLE IS ILL-FORMED
HOLE IS ILL-FORMED
PEG WILL FIT
HOLE IS ILL-FORMED
*/
/*
5 1.5 1.5 2.0
1.0 1.0
2.0 2.0
1.75 2.0
1.0 3.0
0.0 2.0
5 1.5 1.5 2.0
1.0 1.0
2.0 2.0
1.75 2.5
1.0 3.0
0.0 2.0
3 0.1 0.2 0.0
-0.5 1.0
0.5 -1.0
0.5 1.0
3 0.25 0.2 0.0
-0.5 1.0
0.5 -1.0
0.5 1.0
3 0.1 1.6 1.2
1.0 1.0
2.0 1.0
1.0 2.0
6 0.1 1.6 1.2
1.0 1.0
1.5 1.0
2.0 1.0
1.2 1.8
1.0 2.0
1.0 1.5
3 0.1 2.0 2.0
1.0 1.0
2.0 1.0
1.0 2.0
4 1.0 2.0 1.0
0.0 0.0
0.0 4.0
4.0 4.0
4.0 0.0
4 1.0 3.5 1.0
0.0 0.0
0.0 4.0
4.0 4.0
4.0 0.0
4 0.2 1.5 1.0
1.0 1.0
2.0 2.0
1.0 3.0
0.0 2.0
4 0.4 1.5 1.0
1.0 1.0
2.0 2.0
1.0 3.0
0.0 2.0
5 0.2 1.5 2.5
1.0 1.0
2.0 2.0
1.75 2.75
1.0 3.0
0.0 2.0
5 0.2 1.5 2.5
1.0 1.0
2.0 2.0
1.75 2.5
1.0 3.0
0.0 2.0
9 0.2 0.5 2.5
0.0 0.0
1.0 0.0
1.0 1.0
2.0 1.0
2.0 0.0
3.0 0.0
3.0 5.0
1.5 5.0
0.0 5.0
9 0.2 0.5 2.5
0.0 0.0
1.0 0.0
1.0 -1.0
2.0 -1.0
2.0 0.0
3.0 0.0
3.0 5.0
1.5 5.0
0.0 5.0
7 0.2 0.5 2.5
0.0 0.0
1.0 0.0
2.0 0.0
3.0 0.0
3.0 5.0
1.5 5.0
0.0 5.0
4 0.1 1 0.5
0 2
1 0
2 2
1 1
1
*/

A Round Peg in a Ground Hole(凸包应用POJ 1584)的更多相关文章

  1. POJ1584 A Round Peg in a Ground Hole 凸包判断 圆和凸包的关系

    POJ1584 题意:给定n条边首尾相连对应的n个点 判断构成的图形是不是凸多边形 然后给一个圆 判断圆是否完全在凸包内(相切也算) 思路:首先运用叉积判断凸多边形 相邻三条边叉积符号相异则必有凹陷 ...

  2. POJ 1584 A Round Peg in a Ground Hole[判断凸包 点在多边形内]

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6682   Acc ...

  3. POJ 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4438   Acc ...

  4. POJ 1584:A Round Peg in a Ground Hole

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5741   Acc ...

  5. POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内

    首先判断是不是凸多边形 然后判断圆是否在凸多边形内 不知道给出的点是顺时针还是逆时针,所以用判断是否在多边形内的模板,不用是否在凸多边形内的模板 POJ 1584 A Round Peg in a G ...

  6. POJ 1584 A Round Peg in a Ground Hole 判断凸多边形,判断点在凸多边形内

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5456   Acc ...

  7. POJ 1518 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】

    链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  8. POJ 1584 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】

    链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  9. A Round Peg in a Ground Hole(判断是否是凸包,点是否在凸包内,圆与多边形的关系)

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4628   Accepted: 1434 Description The D ...

随机推荐

  1. 异步调用webservice

    一.异步调用 asynchronous call(异步调用):一个可以无需等待被调用函数的返回值就让操作继续进行的方法 举例: 异步调用就是你 喊 你朋友吃饭 ,你朋友说知道了 ,待会忙完去找你 ,你 ...

  2. PostgreSQL Monitor pg_view

    PostgreSQL Monitor pg_view https://github.com/zalando/pg_view Requirements Linux 2.6, python 2.6, ps ...

  3. Lintcode: Single Number III

    Given 2*n + 2 numbers, every numbers occurs twice except two, find them. Example Given [1,2,2,3,4,4, ...

  4. @perproty and @synthesize

    .@property 是什么? @perperty 是声明属性的语法,他可以快速方便的为实例变量创建存取器,并允许我们通过点语法使用存取器 [存取器:用于获取和设置实例变量的方法,获取实例变量值得是g ...

  5. em和rem及rem在移动的应用

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <style t ...

  6. java 网络编程(二)----UDP基础级的示例

    下面介绍UDP基础级的代码示例: 首先了解创建UDP传输的发送端的思路: 1.创建UDP的Socket服务.2.将要发送的数据封装到数据包中.3.通过UDP的socket服务将数据包发送出去.4.关闭 ...

  7. 【crunch bang】安装firefox,删除iceweasel

    首先,移除iceweasel: apt-get remove iceweasel Then, download the latest Linux build of Firefox directly f ...

  8. C语言初学者代码中的常见错误与瑕疵(14)

    见:C语言初学者代码中的常见错误与瑕疵(14) 相关链接:http://www.anycodex.com/blog/?p=87

  9. Sqlserver Sql Agent Job 只能同时有一个实例运行

    Sqlserver Sql Agent中的Job默认情况下只能有一个实例在运行,也就是说假如你的Sql Agent里面有一个正在运行的Job叫"Test Job",如果你现在再去启 ...

  10. ASP.NET MVC的TempData(转载)

    本文章基于ASP.NET MVC Preview5. ASP.NET MVC的TempData用于传输一些临时的数据,例如在各个控制器Action间传递临时的数据或者给View传递一些临时的数据,相信 ...