题目链接

题意 : 给你若干个点,让你找最小的正方形覆盖这所有的点。输出面积。

思路 : 三分枚举正方形两对边的距离,然后求出最大,本题用的是旋转正方形,也可以用旋转点,即点的相对位置不变。

正方形从0度到180度变化的过程中,把所有点覆盖,面积肯定是有一个最小峰值,是一个凸函数。因此可以用三分法解决。这里有一个难点就是已知两个定点的x,y坐标,过这两个点做两条平行线,平行线并与x轴成d度的角,怎么算出两条平行线的距离。

d1 = fabs(cos(d)*(yi-yj)-sin(d)*(xi-xj));

d2 = fabs*(sin(d)*(yi-yj)+cos(d)*(xi-xj));

 #include <iostream>
#include <cstdio>
#include <cmath>
#define eps 1e-9 using namespace std; int T,n;
int x[],y[]; double calc(double d)
{
double dis1,dis2,dis;
dis = 0.0;
for(int i = ; i < n ; i ++)
{
for(int j = i+ ; j <= n ; j++)
{
dis1 = fabs(cos(d)*(y[i]-y[j])-sin(d)*(x[i]-x[j]));
dis2 = fabs(sin(d)*(y[i]-y[j])+cos(d)*(x[i]-x[j]));
dis = max(dis,max(dis1,dis2) ) ;
}
}
return dis*dis;
}
int main()
{
double l,r,mid,midmid;
double s1,s2;
cin>>T;
for(int k = ; k < T ; k++)
{
cin>>n;
for(int i = ; i <= n ; i++)
cin>>x[i]>>y[i];
l = 0.0;
r = acos(-1.0)/;
while(r-l >= eps)
{
mid = (l + r) / ;
midmid = (mid + r) / ;
s1 = calc(mid) ;
s2 = calc(midmid) ;
if(s1 < s2)
r = midmid ;
else l = mid ;
}
printf("%.2lf\n",min(s1,s2));
}
return ;
}

关于三分的知识点,链接1链接2,下述是链接2的内容:

三分算法解决凸形或者凹形函数的极值;

二分解决具有单调性的函数的极值;

mid = (Left + Right) / 2

midmid = (mid + Right) / 2;

如果mid靠近极值点,则Right = midmid;

否则(即midmid靠近极值点),则Left = mid;

程序模版如下:

double cal(Type a)
{
/* 根据题目的意思计算 */
}
 void solve()
{
double Left, Right;
double mid, midmid;
double mid_value, midmid_value;
Left = MIN; Right = MAX;
while (Left + EPS <= Right)
{
mid = (Left + Right) / ;
midmid = (mid + Right) / ;
if (cal(mid)>=cal(midmid)) Right = midmid;
else Left = mid;
}
}

我搜索的三分算法的题目:HDU :3400  2298  4454  2438  3756

POJ:  3301   3737

ZOJ: 3203

POJ 3301 Texas Trip (三分)的更多相关文章

  1. 三分 --- POJ 3301 Texas Trip

    Texas Trip Problem's Link:   http://poj.org/problem?id=3301 Mean: 给定n(n <= 30)个点,求出包含这些点的面积最小的正方形 ...

  2. poj 3301 Texas Trip(几何+三分)

    Description After a day trip with his friend Dick, Harry noticed a strange pattern of tiny holes in ...

  3. poj 3301 Texas Trip 三分法

    思路:三分法求解凸函数的极值,三分法介绍在这:http://hi.baidu.com/czyuan_acm/item/81b21d1910ea729c99ce33db 很容易就可以推出旋转后的坐标: ...

  4. POJ 3301 Texas Trip

    题目大意: 在二维坐标系中给出一些点.求能覆盖他们的最小正方形的面积(正方形的边不一定平行坐标轴) 解题思路: 对于一个点.若坐标轴旋转a度(弧度制).那么X'=X*cos(a)-Y*sin(a);Y ...

  5. POJ 3301:Texas Trip(计算几何+三分)

    http://poj.org/problem?id=3301 题意:在二维平面上有n个点,每个点有一个坐标,问需要的正方形最小面积是多少可以覆盖所有的点. 思路:从第二个样例可以看出,将正方形旋转45 ...

  6. poj3301 Texas Trip【三分算法】

    题目地址:http://poj.org/problem?id=3301 简述:T组测试数据,每组线输入n,代表有n个点,接下来输入这n个点的坐标,坐标都是整数. 要求用一个最小的正方形覆盖所有的点,输 ...

  7. POJ 3301 三分(最小覆盖正方形)

    题意:      给你n个点,让你找一个最小的正方形去覆盖所有点.思路:       想一下,如果题目中规定正方形必须和x轴平行,那么我们是不是直接找到最大的x差和最大的y差取最大就行了,但是这个题目 ...

  8. POJ3301 Texas Trip 计算几何、随机化贪心

    传送门--Vjudge 三分写法似乎有问题,可以去Udebug上看Morass的\(666\)个测试点的数据,我的乱搞有很多比正解答案小,但还是能在SPOJ和POJ过,可见数据之水. 可以对正方形的角 ...

  9. poj3301Texas Trip(三分)

    链接 这题还真没看出来长得像三分.. 三分角度,旋转点. 最初找到所有点中最左边.右边.上边.下边的点,正方形边长为上下距离和左右距离的最大值,如图样例中的四个点(蓝色的),初始正方形为红色的正方形. ...

随机推荐

  1. Android--将图片存放到我们本地

    代码里面有详细的解释,我就不多说了 //处理并保存图像 private File dealPhoto(Bitmap photo){ FileOutputStream fileOutputStream ...

  2. UISlider swift

    // // ViewController.swift // UILabelTest // // Created by mac on 15/6/23. // Copyright (c) 2015年 fa ...

  3. UIStepper swift

    // // ViewController.swift // UILabelTest // // Created by mac on 15/6/23. // Copyright (c) 2015年 fa ...

  4. JSON WEB TOKENS

    用JWT来保护我们的ASP.NET Core Web API   在上一篇博客中,自己动手写了一个Middleware来处理API的授权验证,现在就采用另外一种方式来处理这个授权验证的问题,毕竟现在也 ...

  5. OC中成员变量的命名

    先前写C++ 的时候,命名成员变量一般都是用 m_veriableName:的方式,但是进到新项目组,用了OC以后,发现成员变量都是用 veriableName_的方式,最后的一个下划线表示是成员变量 ...

  6. STL之multiset

    参见http://www.cplusplus.com/reference/set/multiset/ template < class T,                            ...

  7. “我爱淘”冲刺阶段Scrum站立会议9

    完成任务: 完成了webservice的配置与测试. 计划任务: 可以通过webservice将数据库中的内容解析出来,通过查询可以得到想要的内容. 遇到问题: 服务器已经配好,,也已经测试成功,不过 ...

  8. jQuery中ready与load事件

    jQuery中ready与load事件(来自慕课网) jQuery有3种针对文档加载的方法 $(document).ready(function() { // ...代码... }) //docume ...

  9. php大文件下载

    <?php header("Content-Type:text/html;charset:utf-8"); //class FileDownServer{ //$file_n ...

  10. 如何将后台传来的json反序列化为前端具体对象

    //jQuery方式 var obj = $.parseJSON(json); ....   //eval var obj = eval("("+json+")" ...