P2429 制杖题
P2429 制杖题
这个题用线性筛会WA一个点,因为这个题是给定的质数集,最大的质数会比当前的倍数大,就会出现上面的情况。
怎办?
判重用set啊!
set+线性筛就过掉了。16ms
#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cmath>
#include<set>
#include<ctime>
#include<cstring>
#define mod 376544743
#define inf 2147483647
#define For(i,a,b) for(register long long i=a;i<=b;i++)
#define p(a) putchar(a)
#define g() getchar()
//by war
//2017.10.19
using namespace std;
long long n,m;
long long prime[];
long long tot;
set<long long>s;
void in(long long &x)
{
long long y=;
char c=g();x=;
while(c<''||c>'')
{
if(c=='-')
y=-;
c=g();
}
while(c<=''&&c>='')x=x*+c-'',c=g();
x*=y;
}
void o(long long x)
{
if(x<)
{
p('-');
x=-x;
}
if(x>)o(x/);
p(x%+'');
} void Euler()
{
For(i,,m/prime[])
{
for(int j=;j<=n&&prime[j]*i<=m;j++)
{
if(!s.count(prime[j]*i))
{
tot=(tot+prime[j]*i)%mod;
s.insert(prime[j]*i);
}
if(i%prime[j]==)
break;
}
}
} int main()
{ in(n),in(m);
For(i,,n)
in(prime[i]);
sort(prime+,prime+n+);
Euler();
o(tot%mod);
return ;
}
P2429 制杖题的更多相关文章
- 洛谷P2429 制杖题 [2017年6月计划 数论10]
P2429 制杖题 题目描述 求不大于 m 的. 质因数集与给定质数集有交集的自然数之和. 输入输出格式 输入格式: 第一行二个整数 n,m. 第二行 n 个整数,表示质数集内的元素 p[i]. 输出 ...
- P2429 【制杖题】
这题目名字也是够了... emmmmmm为什么要用线筛??????不感觉很麻烦吗??????既然是智障制杖题,那么肯定要用很简单的算法啦~下面,我就提供一种非常便于理解的膜你算法~~~很明显,做了这题 ...
- luogu2429 制杖题
题目大意 求不大于 m 的. 质因数集与给定有n个元素的质数集有交集的自然数之和. 数据范围 1 2 3 n*m<=10^7 4 5 n<=2,m<=10^9 6 7 n<=2 ...
- PAT甲级 进制转换题_C++题解
进制转换题 PAT (Advanced Level) Practice 进制转换题 目录 <算法笔记> 重点摘要 1015 Reversible Primes (20) 1019 Gene ...
- OI回忆录——一个过气OIer的制杖历程
初中 初一参加学校信息学选修课,一周一节课,学pascal. 初一寒假(大约是)入选(其实是钦定吧)当时加上我只有3人的校队(我当然是最弱的一个. 当时甚至有幸得到叉姐授课(现在才知道这是多么难得的机 ...
- 【蓝桥】第八届C语言C组第7题 Excel地址(进制变形题,stack()简单使用)转载
标题: Excel地址 Excel单元格的地址表示很有趣,它使用字母来表示列号. 比如, A表示第1列, B表示第2列, Z表示第26列, AA表示第27列, AB表示第28列, BA表示第53列, ...
- [题解向] CF#Global Round 1の题解(A $\to$ G)
这里是总链接\(Link\). \(A\) 题意:求\(\sum_{i=1}^{k} a_i\times b^{k-i}\)的奇偶性, \(k = \Theta(n \log n)\) --其实很容易 ...
- 【线性规划与网络流 24题】已完成(3道题因为某些奇怪的原因被抛弃了QAQ)
写在前面:SDOI2016 Round1滚粗后蒟蒻开始做网络流来自我拯救(2016-04-11再过几天就要考先修课,现在做网络流24题貌似没什么用←退役节奏) 做的题目将附上日期,见证我龟速刷题. 1 ...
- LOJ#10117. 「一本通 4.1 练习 2」简单题
LOJ#10117. 「一本通 4.1 练习 2」简单题 题目描述 题目来源:$CQOI 2006$ 有一个$n$个元素的数组,每个元素初始均为$0$.有$m$条指令,要么让其中一段连续序列数字反转— ...
随机推荐
- Mac安装mysql8.0.12
···shell 下载 wget https://dev.mysql.com/get/Downloads/MySQL-8.0/mysql-8.0.12-macos10.13-x86_64.tar.gz ...
- os.chmod()--更改目录授权权限
用法:os.chmod() 方法用于更改文件或目录的权限. 语法:os.chmod(path, mode) 参数:只需要2个参数,一个是路径,一个是说明路径的模式. path -- 文件名路径或目录路 ...
- 【LibreOJ】#6392. 「THUPC2018」密码学第三次小作业 / Rsa 扩展欧几里得算法
[题目]#6392. 「THUPC2018」密码学第三次小作业 / Rsa [题意]T次询问,给定正整数c1,c2,e1,e2,N,求正整数m满足: \(c_1=m^{e_1} \ \ mod \ \ ...
- 20155314 2016-2017-2 《Java程序设计》第6周学习总结
20155314 2016-2017-2 <Java程序设计>第6周学习总结 教材学习内容总结 理解流与IO 理解InputStream/OutPutStream的继承架构 理解Reade ...
- 第7月第17天 rxswift swift3.0
1.rxswift just(...) .subscribe(onNext: { }) https://realm.io/cn/news/slug-max-alexander-functional-r ...
- 解决MySQL新增用户无法登陆问题
1. 新增用户 grant all on *.* to '库名'@'%' identified by '库名'; 2. 刷新授权表 flush privileges; 3. 删除空用户 use mys ...
- 判断线段之间的关系(D - Intersecting Lines POJ - 1269 )
题目链接:https://vjudge.net/contest/276358#problem/D 题目大意:每一次给你两条直线,然后问你这两条直线的关系(平行,共线,相交(输出交点)). 具体思路:先 ...
- java交互方式中的同步与异步
JAVA中交互方式分为同步和异步两种: 1.同步交互:指发送一个请求,需要等待返回,然后才能够发送下一个请求,有个等待过程; 2.异步交互:指发送一个请求,不需要等待返回,随时可以再发送下一个请求,即 ...
- 使用NSIS制作安装包
nsis下载地址:http://www.pc6.com/softview/SoftView_14342.html nsis使用: 启动NSIS程序主界面,选择“可视化脚本编辑器(VNISEdit)”菜 ...
- VELT-0.1.5开发:使用kgdb调试Linux内核【转】
转自:http://demo.netfoucs.com/lights_joy/article/details/44106589 VELT的全称是Visual EmbedLinuxTools,它是一个与 ...