【bzoj2669】 cqoi2012—局部极小值
http://www.lydsy.com/JudgeOnline/problem.php?id=2669 (题目链接)
题意
给出一个$n*m$的整数矩阵,其中$[1,nm]$中的整数每个出现一次,有一些位置为局部最小值。问方案数。
Solution
好神的dp啊。
http://blog.csdn.net/popoqqq/article/details/48028773
$cnt_j$表示的是,在局部最小值被填充的状态为$j$的情况下,目前有多少个位置可以填,这些位置中包括已经被填了数的位置。
细节
最后加模再取模
代码
// bzoj2669
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf (1ll<<30)
#define MOD 12345678
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; int xx[9]={0,-1,-1,-1,0,1,1,1,0};
int yy[9]={1,1,0,-1,-1,-1,0,1,0};
int f[30][1000],cnt[1000],fil[10][10],bin[30],ans,n,m;
pair<int,int> t[10];
char s[10][10]; int dp() {
memset(f,0,sizeof(f));
memset(cnt,0,sizeof(cnt));
int top=0;
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++) if (s[i][j]=='X') t[++top]=pair<int,int>(i,j);
for (int i=0;i<bin[top];i++) {
memset(fil,0,sizeof(fil));
for (int j=1;j<=top;j++) if (!(i&bin[j-1])) fil[t[j].first][t[j].second]=1;
for (int j=1;j<=n;j++)
for (int l,k=1;k<=m;k++) {
for (l=0;l<9;l++) if (fil[j+xx[l]][k+yy[l]]) break;
if (l==9) cnt[i]++;
}
}
f[0][0]=1;
for (int i=1;i<=n*m;i++)
for (int j=0;j<bin[top];j++) {
(f[i][j]+=f[i-1][j]*max(0,cnt[j]-i+1))%=MOD;
for (int k=1;k<=top;k++)
if (bin[k-1]&j) (f[i][j]+=f[i-1][j^bin[k-1]])%=MOD;
}
return f[n*m][bin[top]-1];
}
void dfs(int x,int y,int c) {
if (x==n+1) {(ans+=dp()*(c&1 ? -1 : 1))%=MOD;return;}
if (y==m) dfs(x+1,1,c);
else dfs(x,y+1,c);
int k;
for (k=0;k<9;k++) if (s[x+xx[k]][y+yy[k]]=='X') break;
if (k==9) {
s[x][y]='X';
if (y==m) dfs(x+1,1,c+1);
else dfs(x,y+1,c+1);
s[x][y]='.';
}
}
int main() {
bin[0]=1;for (int i=1;i<=20;i++) bin[i]=bin[i-1]<<1;
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) scanf("%s",s[i]+1);
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
if (s[i][j]=='X')
for (int k=0;k<8;k++) if (s[i+xx[k]][j+yy[k]]=='X') {puts("0");return 0;}
dfs(1,1,0);
printf("%d\n",(ans+MOD)%MOD);
return 0;
}
【bzoj2669】 cqoi2012—局部极小值的更多相关文章
- [BZOJ2669] [cqoi2012]局部极小值
[BZOJ2669] [cqoi2012]局部极小值 Description 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点) ...
- bzoj2669[cqoi2012]局部极小值 容斥+状压dp
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 774 Solved: 411[Submit][Status ...
- BZOJ2669 [cqoi2012]局部极小值 状压DP 容斥原理
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2669 题意概括 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所 ...
- [BZOJ2669][CQOI2012]局部极小值:DP+容斥原理
分析 题目要求有且只有一些位置是局部极小值.有的限制很好处理,但是只有嘛,嗯...... 考虑子集反演(话说这个其实已经算是超集反演了吧还叫子集反演是不是有点不太合适),枚举题目给出位置集合的所有超集 ...
- bzoj2669 [cqoi2012]局部极小值 状压DP+容斥
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2669 题解 可以发现一个 \(4\times 7\) 的矩阵中,有局部最小值的点最多有 \(2 ...
- 【BZOJ-2669】局部极小值 状压DP + 容斥原理
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 561 Solved: 293[Submit][Status ...
- bzoj 2669 [cqoi2012]局部极小值 DP+容斥
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 838 Solved: 444[Submit][Status ...
- 【BZOJ 2669】 2669: [cqoi2012]局部极小值 (状压DP+容斥原理)
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 667 Solved: 350 Description 有一 ...
- P3160 [CQOI2012]局部极小值
题目 P3160 [CQOI2012]局部极小值 一眼就是状压,接下来就不知道了\(qwq\) 做法 我们能手玩出局部小值最多差不多是\(8,9\)个的样子,\(dp_{i,j}\)为填满\(1~i\ ...
- P3160 [CQOI2012]局部极小值 题解(状压DP+容斥)
题目链接 P3160 [CQOI2012]局部极小值 双倍经验,双倍快乐 解题思路 存下来每个坑(极小值点)的位置,以这个序号进行状态压缩. 显然,\(4*7\)的数据范围让极小值点在8个以内(以下示 ...
随机推荐
- WFP loading 窗口显示 SplashScreen
public partial class App : Application { protected override void OnStartup(StartupEventArgs e) { Spl ...
- 论FPGA建模,与面向对象编程的相似性
很久没有写FPGA方面的博客了,因为最近一直在弄一个绘图的上位机. 我觉得自己建模思想还不错,但是面向对象思维总是晕的.突然有一天发现,两者居然有这么对共同之处,完全可以相互启发啊.就简单聊下. 1. ...
- Eclipse中Hadoop插件配置
Eclipse中Hadoop插件DFS配置 http://www.cnblogs.com/xia520pi/archive/2012/05/20/2510723.html
- Hadoop开发第3期---Hadoop的伪分布式安装
一.准备工作 1. 远程连接工具的安装 PieTTY 是在PuTTY 基础上开发的,改进了Putty 的用户界面,提供了多语种支持.Putty 作为远程连接linux 的工具,支持SSH 和telne ...
- 文章翻译:Recommending items to more than a billion people(面向十亿级用户的推荐系统)
Web上数据的增长使得在完整的数据集上使用许多机器学习算法变得更加困难.特别是对于个性化推荐问题,数据采样通常不是一种选择,需要对分布式算法设计进行创新,以便我们能够扩展到这些不断增长的数据集. 协同 ...
- SQL调优日志--内存问题排查入门篇
概述 很多系统的性能问题,是由内存导致的.内存不够会导致页面频繁换入换出,IO队列高,进而影响数据库整体性能. 排查 内存对数据库性能非常重要.那么我当出现问题的时候,我们怎么排查性能问题呢? 存在问 ...
- iOSPush自动隐藏tabbar
只需要在UITabBarController添加控制器的时候调用YZNav初始化,就可以实现tabbar的自动隐藏了. 直接上github地址:https://github.com/YouZhiZhe ...
- GitHub 新手教程 三,Git Bash
1,通过 开始菜单 启动 Git Bash,或者 在 cmd 下执行以下命令: D:\SoftWare\Git\git-bash.exe --cd-to-home (D:\SoftWare\Git 是 ...
- docker 学习笔记(1)--常用命令
docker pull---- 获取image(镜像)docker build---- 创建image(镜像)docker images ----查询所有的image(镜像)docker run--- ...
- Teaching Machines to Understand Us 让机器理解我们 之二 深度学习的历史
Deep history 深度学习的历史 The roots of deep learning reach back further than LeCun’s time at Bell Labs. H ...