Spark踩坑——java.lang.AbstractMethodError
今天新开发的Structured streaming部署到集群时,总是报这个错:
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/data4/yarn/nm/filecache/25187/slf4j-log4j12-1.7.16.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/opt/cloudera/parcels/CDH-5.7.2-1.cdh5.7.2.p0.18/jars/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
Exception in thread "stream execution thread for [id = 0ab981e9-e3f4-42ae-b0d7-db32b249477a, runId = daa27209-8817-4dee-b534-c415d10d418a]" java.lang.AbstractMethodError
at org.apache.spark.internal.Logging$class.initializeLogIfNecessary(Logging.scala:99)
at org.apache.spark.sql.kafka010.KafkaSourceProvider$.initializeLogIfNecessary(KafkaSourceProvider.scala:369)
at org.apache.spark.internal.Logging$class.log(Logging.scala:46)
at org.apache.spark.sql.kafka010.KafkaSourceProvider$.log(KafkaSourceProvider.scala:369)
at org.apache.spark.internal.Logging$class.logDebug(Logging.scala:58)
at org.apache.spark.sql.kafka010.KafkaSourceProvider$.logDebug(KafkaSourceProvider.scala:369)
at org.apache.spark.sql.kafka010.KafkaSourceProvider$ConfigUpdater.set(KafkaSourceProvider.scala:439)
at org.apache.spark.sql.kafka010.KafkaSourceProvider$.kafkaParamsForDriver(KafkaSourceProvider.scala:394)
at org.apache.spark.sql.kafka010.KafkaSourceProvider.createSource(KafkaSourceProvider.scala:90)
at org.apache.spark.sql.execution.datasources.DataSource.createSource(DataSource.scala:277)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$1$$anonfun$applyOrElse$1.apply(MicroBatchExecution.scala:80)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$1$$anonfun$applyOrElse$1.apply(MicroBatchExecution.scala:77)
at scala.collection.mutable.MapLike$class.getOrElseUpdate(MapLike.scala:194)
at scala.collection.mutable.AbstractMap.getOrElseUpdate(Map.scala:80)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$1.applyOrElse(MicroBatchExecution.scala:77)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$1.applyOrElse(MicroBatchExecution.scala:75)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.logicalPlan$lzycompute(MicroBatchExecution.scala:75)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.logicalPlan(MicroBatchExecution.scala:61)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:265)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:189)
百度了一下说是版本不一致导致的。于是重新检查各个jar包,发现spark-sql-kafka的版本是2.2,而spark的版本是2.3,修改spark-sql-kafka的版本后,顺利执行。
Spark踩坑——java.lang.AbstractMethodError的更多相关文章
- spark 运行报错:java.lang.AbstractMethodError
报错日志如下: Caused by: java.lang.AbstractMethodError: sparkCore.JavaWordCount$2.call(Ljava/lang/Object;) ...
- Spark踩坑记——Spark Streaming+Kafka
[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark strea ...
- Spark踩坑记——数据库(Hbase+Mysql)
[TOC] 前言 在使用Spark Streaming的过程中对于计算产生结果的进行持久化时,我们往往需要操作数据库,去统计或者改变一些值.最近一个实时消费者处理任务,在使用spark streami ...
- Spark踩坑记——共享变量
[TOC] 前言 Spark踩坑记--初试 Spark踩坑记--数据库(Hbase+Mysql) Spark踩坑记--Spark Streaming+kafka应用及调优 在前面总结的几篇spark踩 ...
- Spark踩坑记——从RDD看集群调度
[TOC] 前言 在Spark的使用中,性能的调优配置过程中,查阅了很多资料,之前自己总结过两篇小博文Spark踩坑记--初试和Spark踩坑记--数据库(Hbase+Mysql),第一篇概况的归纳了 ...
- [转]Spark 踩坑记:数据库(Hbase+Mysql)
https://cloud.tencent.com/developer/article/1004820 Spark 踩坑记:数据库(Hbase+Mysql) 前言 在使用Spark Streaming ...
- Spark踩坑记:共享变量
收录待用,修改转载已取得腾讯云授权 前言 前面总结的几篇spark踩坑博文中,我总结了自己在使用spark过程当中踩过的一些坑和经验.我们知道Spark是多机器集群部署的,分为Driver/Maste ...
- Spark踩坑记——数据库(Hbase+Mysql)转
转自:http://www.cnblogs.com/xlturing/p/spark.html 前言 在使用Spark Streaming的过程中对于计算产生结果的进行持久化时,我们往往需要操作数据库 ...
- Spark踩坑记:Spark Streaming+kafka应用及调优
前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从k ...
随机推荐
- 日志分析工具、日志管理系统、syslog分析
日志分析工具.日志管理系统.syslog分析 系统日志(Syslog)管理是几乎所有企业的重要需求.系统管理员将syslog看作是解决网络上系统日志支持的系统和设备性能问题的关键资源.人们往往低估了对 ...
- 爬虫模块之selenium模块
一 模块的介绍 selenium模块最开始是一个自动化测试的工具,驱动浏览器完全模拟浏览器自动测试. from selenium import webdriver # 驱动浏览器 browser=we ...
- 2019.01.24 NOIP训练 旅行(轮廓线dp)
传送门 题意简述: 给一个n∗mn*mn∗m的有障碍的网格图,问你从左上角走到左下角并覆盖所有可行格子的路径条数. 思路: 路径不是很好算. 将图改造一下,在最前面添两列,第一列全部能通过,第二列只有 ...
- lepus部署
lepus部署 lepus安装 cd /usr/local/src/lepus_v3.7/ cd python/ sh install.sh mysql配置 mysql -uroot -p'zaBBi ...
- MySql Cast与Convert函数
两者具体的语法如下: Cast(value as type): Convert(value ,type): type不是都可以滴,可以转换的type如下: 二进制,同带binary前缀的效果 : BI ...
- js判断软键盘是否开启弹出
移动端关于页面布局,如果底部有position:fixed的盒子,又有input,当软键盘弹出收起都会影响页面布局.这时候Android可以监听resize事件,代码如下,而ios没有相关事件. va ...
- jquery的bind()和trigger()
本文主要介绍JQuery的trigger()和bind()方法. 1. $(selector).bind(event,data,function)方法为被选元素添加一个或多个事件处理程序,并规定事 ...
- 远程算数程序——版本v1.0
很少有需要背诵的程序,但是从这个程序开始,标记的都是必须背诵的. 远程算数程序概述 远程算数程序比较简单,分为服务器端和客户端,客户端发送欲计算的表达式给服务器端,服务端经过计算又返回结果给客户端.如 ...
- 使用 vs.php 调试PHP相关问题
1. 使用mysql_connect()方法时报错"Call to undefined function mysql_connect()" 这是由于在php.ini没有启用mysq ...
- uva12298(生成函数)
生成函数的一般应用: #include<iostream> #include<cstring> #include<cmath> #include<cstdio ...