Spark踩坑——java.lang.AbstractMethodError
今天新开发的Structured streaming部署到集群时,总是报这个错:
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/data4/yarn/nm/filecache/25187/slf4j-log4j12-1.7.16.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/opt/cloudera/parcels/CDH-5.7.2-1.cdh5.7.2.p0.18/jars/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
Exception in thread "stream execution thread for [id = 0ab981e9-e3f4-42ae-b0d7-db32b249477a, runId = daa27209-8817-4dee-b534-c415d10d418a]" java.lang.AbstractMethodError
at org.apache.spark.internal.Logging$class.initializeLogIfNecessary(Logging.scala:99)
at org.apache.spark.sql.kafka010.KafkaSourceProvider$.initializeLogIfNecessary(KafkaSourceProvider.scala:369)
at org.apache.spark.internal.Logging$class.log(Logging.scala:46)
at org.apache.spark.sql.kafka010.KafkaSourceProvider$.log(KafkaSourceProvider.scala:369)
at org.apache.spark.internal.Logging$class.logDebug(Logging.scala:58)
at org.apache.spark.sql.kafka010.KafkaSourceProvider$.logDebug(KafkaSourceProvider.scala:369)
at org.apache.spark.sql.kafka010.KafkaSourceProvider$ConfigUpdater.set(KafkaSourceProvider.scala:439)
at org.apache.spark.sql.kafka010.KafkaSourceProvider$.kafkaParamsForDriver(KafkaSourceProvider.scala:394)
at org.apache.spark.sql.kafka010.KafkaSourceProvider.createSource(KafkaSourceProvider.scala:90)
at org.apache.spark.sql.execution.datasources.DataSource.createSource(DataSource.scala:277)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$1$$anonfun$applyOrElse$1.apply(MicroBatchExecution.scala:80)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$1$$anonfun$applyOrElse$1.apply(MicroBatchExecution.scala:77)
at scala.collection.mutable.MapLike$class.getOrElseUpdate(MapLike.scala:194)
at scala.collection.mutable.AbstractMap.getOrElseUpdate(Map.scala:80)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$1.applyOrElse(MicroBatchExecution.scala:77)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$1.applyOrElse(MicroBatchExecution.scala:75)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.logicalPlan$lzycompute(MicroBatchExecution.scala:75)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.logicalPlan(MicroBatchExecution.scala:61)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:265)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:189)
百度了一下说是版本不一致导致的。于是重新检查各个jar包,发现spark-sql-kafka的版本是2.2,而spark的版本是2.3,修改spark-sql-kafka的版本后,顺利执行。
Spark踩坑——java.lang.AbstractMethodError的更多相关文章
- spark 运行报错:java.lang.AbstractMethodError
报错日志如下: Caused by: java.lang.AbstractMethodError: sparkCore.JavaWordCount$2.call(Ljava/lang/Object;) ...
- Spark踩坑记——Spark Streaming+Kafka
[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark strea ...
- Spark踩坑记——数据库(Hbase+Mysql)
[TOC] 前言 在使用Spark Streaming的过程中对于计算产生结果的进行持久化时,我们往往需要操作数据库,去统计或者改变一些值.最近一个实时消费者处理任务,在使用spark streami ...
- Spark踩坑记——共享变量
[TOC] 前言 Spark踩坑记--初试 Spark踩坑记--数据库(Hbase+Mysql) Spark踩坑记--Spark Streaming+kafka应用及调优 在前面总结的几篇spark踩 ...
- Spark踩坑记——从RDD看集群调度
[TOC] 前言 在Spark的使用中,性能的调优配置过程中,查阅了很多资料,之前自己总结过两篇小博文Spark踩坑记--初试和Spark踩坑记--数据库(Hbase+Mysql),第一篇概况的归纳了 ...
- [转]Spark 踩坑记:数据库(Hbase+Mysql)
https://cloud.tencent.com/developer/article/1004820 Spark 踩坑记:数据库(Hbase+Mysql) 前言 在使用Spark Streaming ...
- Spark踩坑记:共享变量
收录待用,修改转载已取得腾讯云授权 前言 前面总结的几篇spark踩坑博文中,我总结了自己在使用spark过程当中踩过的一些坑和经验.我们知道Spark是多机器集群部署的,分为Driver/Maste ...
- Spark踩坑记——数据库(Hbase+Mysql)转
转自:http://www.cnblogs.com/xlturing/p/spark.html 前言 在使用Spark Streaming的过程中对于计算产生结果的进行持久化时,我们往往需要操作数据库 ...
- Spark踩坑记:Spark Streaming+kafka应用及调优
前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从k ...
随机推荐
- mysql的一些配置优化
[mysqld]lower_case_table_names=1datadir=/var/lib/mysqlsocket=/var/lib/mysql/mysql.sockuser=mysql# Di ...
- 2018.11.03 NOIP模拟 地球发动机(线性dp)
传送门 考试5分钟写完. 如果没这题今天多半爆零了(汗 直接二分出合法的转移范围. 然后用后面的状态更新前面的就可以了. 代码
- 2018.10.31 bzoj3339&&3585mex(主席树)
传送门 双倍经验 直接上主席树,每个叶节点维护这个值出现的最右区间,非叶子节点维护当前值域内所有最右区间的最小值. 查询的时候只用在以root[qr]root[qr]root[qr]为根的树上面二分. ...
- MYSQL 事务测试
mysql 事务测试 创建张表 lock1 增加字段 id,name . 增加两条记录 1,a 2,b 启动第一个会话 BEGIN; update lock1 set name='c' where i ...
- 5-具体学习git--分支冲突,merge合并
修改1.py: 然后提交修改: git commit -am "change 4 in master" 之后移到dev分支上: 哎呀,这个乱了. 人家意思是都基于c1分出来两个枝, ...
- IntelliJ IDEA 2017版 Spring5 java.lang.NoSuchMethodError: org.springframework.boot.SpringApplication.<init>([Ljava/lang/Object;)V
错误是java.lang.NoSuchMethodError: org.springframework.boot.SpringApplication.<init>([Ljava/lang/ ...
- oss上传文件夹
最近公司做工程项目,实现文件夹云存储上传. 网上找了很久,发现网上很多项目都存在相似问题,最后终于找到了一个符合我要求的项目. 工程如下: 这里对项目的文件夹云存储上传进行分析,实现文件夹上传,如何进 ...
- HtmlControls和Webcontrols命名空间的区别
HtmlControls(以下简称HC)是对大部分Html标签的复制,这些标签原来是什么样,经过服务器解释后的HC就是什么样.要使用HC,只需要在相应的html标签内加上runat=“server”属 ...
- bzoj2879(动态加边费用流)
参考题解:http://blog.csdn.net/yxuanwkeith/article/details/52254602 //开始跑费用流用的dijkstra,一直错,后来发现动态加边后我不会处理 ...
- Java技术----Java泛型详解
1.为什么需要泛型 泛型在Java中有很重要的地位,网上很多文章罗列各种理论,不便于理解,本篇将立足于代码介绍.总结了关于泛型的知识.希望能给你带来一些帮助. 先看下面的代码: List list = ...