http://acm.hdu.edu.cn/showproblem.php?pid=4897

题意:
给你一棵树,边的颜色要么为白色,要么为黑色,初始每条边为白色,有三种操作

1、将u-v链上面的所有边的颜色翻转
2、将u-v链上面所有邻接的边翻转(边上只有一个点在链上面)
3、询问u->v上面有多少黑色的边

树链剖分,线段树维护4个信息:

按dfs序建立线段树后,如果线段树内节点的区间为[l,r],则此节点维护树上dfs序[l,r]内的父边的信息

父边指 点与父节点之间的边

sum0:节点的父边属于重链且颜色为白色 的边数

sum1:节点的父边属于重链且颜色为黑色 的边数

rev1:节点的父边颜色是否被操作1取反 (实际只会用到属于轻链的边)

rev2:节点的子树中,与节点直接相连的属于轻链边 是否被操作2取反

操作1:直接取反,交换sum0和sum1,维护标记rev1

细节:最后u和v(dep[u]<dep[v])汇集到一条重链的时候,最后一次操作不包括u,因为点代表的是父边的信息

操作2:一条链的相邻边,除了对链上的点维护rev2操作外,

链最顶端的点如果是其父节点的重儿子,需要修改它的rev1

路径上每条重链最底端的点,如果它有重儿子,需要修改它重儿子的rev1

因为标记rev2只维护轻链

操作3:重链直接查,轻链呢?

在树链剖分往上跳的时候,跳轻链一定是只跳一条边

假设这条边连接了节点u和v,dep[u]<dep[v]

如果rev2[u]^rev2[v]^rev1[v] 为 true,则这条边为黑色

clj的题就是好哇!!!

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm> using namespace std; #define N 100001 int n; int front[N],nxt[N<<],to[N<<],tot; int siz[N],dep[N],fa[N];
int bl[N],son[N];
int id[N],dy[N],cnt; bool big[N]; int sum0[N<<],sum1[N<<];
bool rev1[N<<],rev2[N<<]; int ans; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void add(int u,int v)
{
to[++tot]=v; nxt[tot]=front[u]; front[u]=tot;
to[++tot]=u; nxt[tot]=front[v]; front[v]=tot;
} void dfs1(int x)
{
siz[x]=;
for(int i=front[x];i;i=nxt[i])
if(to[i]!=fa[x])
{
fa[to[i]]=x;
dep[to[i]]=dep[x]+;
dfs1(to[i]);
siz[x]+=siz[to[i]];
}
} void dfs2(int x,int top)
{
bl[x]=top;
id[x]=++cnt;
dy[cnt]=x;
int y=;
for(int i=front[x];i;i=nxt[i])
if(to[i]!=fa[x] && siz[to[i]]>siz[y]) y=to[i];
if(y)
{
son[x]=y;
big[y]=true;
dfs2(y,top);
}
else return;
for(int i=front[x];i;i=nxt[i])
if(to[i]!=fa[x] && to[i]!=y) dfs2(to[i],to[i]);
} void down1(int k)
{
rev1[k<<]^=;
swap(sum0[k<<],sum1[k<<]);
rev1[k<<|]^=;
swap(sum0[k<<|],sum1[k<<|]);
rev1[k]^=;
} void down2(int k)
{
rev2[k<<]^=;
rev2[k<<|]^=;
rev2[k]^=;
} void Reverse(int k,int l,int r,int opl,int opr,int ty)
{
if(l>=opl && r<=opr)
{
if(ty==)
{
swap(sum1[k],sum0[k]);
rev1[k]^=;
}
else rev2[k]^=;
return;
}
int mid=l+r>>;
if(rev1[k]) down1(k);
if(rev2[k]) down2(k);
if(opl<=mid) Reverse(k<<,l,mid,opl,opr,ty);
if(opr>mid) Reverse(k<<|,mid+,r,opl,opr,ty);
if(ty==)
{
sum1[k]=sum1[k<<]+sum1[k<<|];
sum0[k]=sum0[k<<]+sum0[k<<|];
}
} int get_lca(int u,int v)
{
while(bl[u]!=bl[v])
{
if(dep[bl[u]]<dep[bl[v]]) swap(u,v);
u=fa[bl[u]];
}
return dep[u]<dep[v] ? u : v;
} bool point_query(int k,int l,int r,int x,int ty)
{
if(l==r) return ty== ? rev1[k] : rev2[k];
if(rev1[k]) down1(k);
if(rev2[k]) down2(k);
int mid=l+r>>;
if(x<=mid) return point_query(k<<,l,mid,x,ty);
return point_query(k<<|,mid+,r,x,ty);
} void query(int k,int l,int r,int opl,int opr)
{
if(l>=opl && r<=opr)
{
ans+=sum1[k];
return;
}
if(rev1[k]) down1(k);
if(rev2[k]) down2(k);
int mid=l+r>>;
if(opl<=mid) query(k<<,l,mid,opl,opr);
if(opr>mid) query(k<<|,mid+,r,opl,opr);
} void solve(int ty,int u,int v)
{
if(ty==)
{
while(bl[u]!=bl[v])
{
if(dep[bl[u]]<dep[bl[v]]) swap(u,v);
Reverse(,,n,id[bl[u]],id[u],);
u=fa[bl[u]];
}
if(dep[u]>dep[v]) swap(u,v);
if(u!=v) Reverse(,,n,id[u]+,id[v],);
}
else if(ty==)
{
int lca=get_lca(u,v);
if(lca!=u && lca!=v)
{
if(big[lca]) Reverse(,,n,id[lca],id[lca],);
}
else
{
if(dep[u]>dep[v]) swap(u,v);
if(big[u]) Reverse(,,n,id[u],id[u],);
}
while(bl[u]!=bl[v])
{
if(dep[bl[u]]<dep[bl[v]]) swap(u,v);
if(son[u]) Reverse(,,n,id[son[u]],id[son[u]],);
Reverse(,,n,id[bl[u]],id[u],);
u=fa[bl[u]];
}
if(dep[u]>dep[v]) swap(u,v);
if(son[v]) Reverse(,,n,id[son[v]],id[son[v]],);
Reverse(,,n,id[u],id[v],);
}
else
{
ans=;
while(bl[u]!=bl[v])
{
if(dep[bl[u]]<dep[bl[v]]) swap(u,v);
query(,,n,id[bl[u]],id[u]);
ans+=point_query(,,n,id[bl[u]],)^point_query(,,n,id[fa[bl[u]]],)^point_query(,,n,id[bl[u]],);
u=fa[bl[u]];
}
if(dep[u]>dep[v]) swap(u,v);
if(u!=v) query(,,n,id[u]+,id[v]);
printf("%d\n",ans);
}
} void build(int k,int l,int r)
{
sum0[k]=sum1[k]=;
rev1[k]=rev2[k]=false;
if(l==r)
{
sum0[k]=big[dy[l]];
return;
}
int mid=l+r>>;
build(k<<,l,mid);
build(k<<|,mid+,r);
sum0[k]=sum0[k<<]+sum0[k<<|];
} void clear()
{
tot=cnt=;
memset(front,,sizeof(front));
memset(son,,sizeof(son));
memset(big,false,sizeof(big));
} int main()
{
freopen("data.in","r",stdin);
freopen("my.out","w",stdout);
int T;
read(T);
int u,v;
int ty,m,lca;
while(T--)
{
clear();
read(n);
for(int i=;i<n;++i)
{
read(u); read(v);
add(u,v);
}
dfs1();
dfs2(,);
build(,,n);
read(m);
while(m--)
{
read(ty); read(u); read(v);
solve(ty,u,v);
}
}
return ;
}

Little Devil I

Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1087    Accepted Submission(s):
378

Problem Description
There is an old country and the king fell in love with
a devil. The devil always asks the king to do some crazy things. Although the
king used to be wise and beloved by his people. Now he is just like a boy in
love and can’t refuse any request from the devil. Also, this devil is looking
like a very cute Loli.

The devil likes to make thing in chaos. This
kingdom’s road system is like simply a tree(connected graph without cycle). A
road has a color of black or white. The devil often wants to make some change of
this system.

In details, we call a path on the tree from a to b consists
of vertices lie on the shortest simple path between a and b. And we say an edge
is on the path if both its two endpoints is in the path, and an edge is adjacent
to the path if exactly one endpoint of it is in the path.

Sometimes the
devil will ask you to reverse every edge’s color on a path or adjacent to a
path.

The king’s daughter, WJMZBMR, is also a cute loli, she is surprised
by her father’s lolicon-like behavior. As she is concerned about the
road-system’s status, sometimes she will ask you to tell there is how many black
edge on a path.

Initially, every edges is white.

 
Input
The first line contains an integer T, denoting the
number of the test cases.
For each test case, the first line contains an
integer n, which is the size of the tree. The vertices be indexed from 1.
On
the next n-1 lines, each line contains two integers a,b, denoting there is an
edge between a and b.
The next line contains an integer Q, denoting the
number of the operations.
On the next Q lines, each line contains three
integers t,a,b. t=1 means we reverse every edge’s color on path a to b. t=2
means we reverse every edge’s color adjacent to path a to b. t=3 means we query
about the number of black edge on path a to
b.

T<=5.
n,Q<=10^5.
Please use scanf,printf instead of
cin,cout,because of huge input.

 
Output
For each t=3 operation, output the answer in one
line.
 
Sample Input
1
10
2 1
3 1
4 1
5 1
6 5
7 4
8 3
9 5
10 6

10
2 1 6
1 3 8
3 8 10
2 3 4
2 10 8
2 4 10
1 7 6
2 7 3
2 1 4
2 10 10

 
Sample Output
3

Hint

reverse color means change from white to black or vice virsa.

 
Author
WJMZBMR

hdu 4857 Little Devil I的更多相关文章

  1. HDU 4857 拓扑排序 优先队列

    n个数,已经有大小关系,现给m个约束,规定a在b之前,剩下的数要尽可能往前移.输出序列 大小关系显然使用拓扑结构,关键在于n个数本身就有大小关系,那么考虑反向建图,优先选择值最大的入度为零的点,这样得 ...

  2. HDU 4857

    HDU 4857 (反向拓扑排序 + 优先队列) 糟糕的事情发生啦,现在大家都忙着逃命.但是逃命的通道很窄,大家只能排成一行. 现在有n个人,从1标号到n.同时有一些奇怪的约束条件,每个都形如:a必须 ...

  3. HDU 4857 topological_sort

    逃生 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission ...

  4. codeforce E - Minimal Labels+hdu 4857

    两个题目的意思差不多 都是希望得出的拓扑序如果有多种 要求输出字典序小的情况 这里引用一个大佬的博客 关于为什么不能直接建图然后用小根堆解决这个问题(http://blog.csdn.net/rgno ...

  5. HDU 4857 逃生 (反向拓扑排序 & 容器实现)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4857 逃生 Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  6. HDU 4857 逃生 (优先队列+反向拓扑)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4857 解题报告:有n个点,有m个条件限制,限制是像这样的,输入a  b,表示a必须排在b的前面,如果不 ...

  7. HDU 4897 Little Devil I(树链剖分)(2014 Multi-University Training Contest 4)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4897 Problem Description There is an old country and ...

  8. hdu 4857 逃生

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4857 逃生 Description 糟糕的事情发生啦,现在大家都忙着逃命.但是逃命的通道很窄,大家只能 ...

  9. (hdu) 4857 逃生 (拓扑排序+优先队列)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4857 Problem Description 糟糕的事情发生啦,现在大家都忙着逃命.但是逃命的通道很窄 ...

随机推荐

  1. JavaScript快速入门-DOM对象

    一.概述 1.什么是 DOM? DOM 是 W3C(万维网联盟)的标准.DOM 定义了访问 HTML 和 XML 文档的标准: "W3C 文档对象模型(DOM)是中立于平台和语言的接口,它允 ...

  2. stl源码剖析 详细学习笔记 hashset hashmap

    //---------------------------15/03/26---------------------------- //hash_set { /* hash_set概述: 1:这是一个 ...

  3. Spring+SpringMVC+MyBatis整合基础篇(二)牛刀小试

    前言 承接上文,该篇即为项目整合的介绍了. 废话不多说,先把源码和项目地址放上来,重点要写在前面. 项目展示地址,点这里http://ssm-demo.13blog.site,账号:admin 密码: ...

  4. asp.net web api参数

    翻译自:http://www.c-sharpcorner.com/article/parameter-binding-in-asp-net-web-api/ 主要自己学习下,说是翻译,主要是把文章的意 ...

  5. HTML 头部 (head) 实例

    所有表签解释.HTML <meta> 元素元数据(metadata)是关于数据的信息. <meta> 标签提供关于 HTML 文档的元数据.元数据不会显示在页面上,但是对于机器 ...

  6. SSM整合配置(Spring+Spring MVC+Mybatis)

    一.配置准备   通过Maven工程,在eclipse中整合SSM,并在Tomcat服务器上运行 在进行配置前,先理清楚要配置哪些文件,如图,除web.xml外,其余三个配置文件名称均可自定义: 如图 ...

  7. NameNode内存溢出和DataNode请求超时异常处理

    问题背景 春节假期间,接连收到监控程序发出的数据异常问题,赶忙连接上跳板机检查各服务间的状态,发现Datanode在第二台.第三台从节点都掉线了,通过查看Datanode和Namenode运行日志,发 ...

  8. 20135202闫佳歆--week5 系统调用(下)--学习笔记

    此为个人笔记存档 week 5 系统调用(下) 一.给MenuOS增加time和time-asm命令 这里老师示范的时候是已经做好的了: rm menu -rf 强制删除 git clone http ...

  9. linux 常用命令-用户、用户组管理

    注:本篇只涉及常用命令,全部命令可以通过help帮助查看. (1)type useradd   #查看命令属于内部命令还是外部命令,内部命令是嵌在linux的shell中,外部命令存储在路径中 (2) ...

  10. golang yaml配置文件解析

    yaml文件语法 此模块内容转自:http://www.ruanyifeng.com/blog/2016/07/yaml.html 大小写敏感 使用缩进表示层级关系 缩进时不允许使用Tab键,只允许使 ...