[Usaco2012Jan]Bovine Alliance

Time Limit: 2 Sec Memory Limit: 128 MB

Description

Bessie and her bovine pals from nearby farms have finally decided that they are going to start connecting their farms together by trails in an effort to form an alliance against the farmers. The cows in each of the N (1 <= N <= 100,000) farms were initially instructed to build a trail to exactly one other farm, for a total of N trails. However months into the project only M (1 <= M < N) of these trails had actually been built. Arguments between the farms over which farms already built a trail now threaten to split apart the cow alliance. To ease tension, Bessie wishes to calculate how many ways the M trails that exist so far could have been built. For example, if there is a trail connecting farms 3 and 4, then one possibility is that farm 3 built the trail, and the other possibility is that farm 4 built the trail. Help Bessie by calculating the number of different assignments of trails to the farms that built them, modulo 1,000,000,007. Two assignments are considered different if there is at least one trail built by a different farm in each assignment.

给出n个点m条边的图,现把点和边分组,每条边只能和相邻两点之一分在一组,点可以单独一组,问分组方案数。

Input

  • Line 1: Two space-separated integers N and M

  • Lines 2..1+M: Line i+1 describes the ith trail. Each line contains two space-separated integers u_i and v_i (1 <= u_i, v_i <= N, u_i != v_i) describing the pair of farms connected by the trail. Note that there can be two trails between the same pair of farms.

Output

  • Line 1: A single line containing the number of assignments of trails to farms, taken modulo 1,000,000,007. If no assignment satisfies the above conditions output 0.

Sample Input

5 4

1 2

3 2

4 5

4 5

Sample Output

6

HINT

OUTPUT DETAILS: There are 6 possible assignments. Letting {a,b,c,d} mean that farm 1 builds trail a, farm 2 builds trail b, farm 3 builds trail c, and farm 4 builds trail d, the assignments are: {2, 3, 4, 5} {2, 3, 5, 4} {1, 3, 4, 5} {1, 3, 5, 4} {1, 2, 4, 5} {1, 2, 5, 4}

大概就是分情况讨论一下;
首先很多个联通块就用乘法原理就好了
每一个联通块中,如果边数 > 点数,那直接就凉了,对吧。
两个刚好相等的时候就是一个环,环可以顺带很多条链,但是只有一个中心环。。因为环可以正反转,所以是 2
如果是一颗树,你可以把那个倒霉的点找出来,因为一旦你决定了那个点没有边,你蝴蝶效应其他就都定下来了。。。所以贡献是点数
统计答案即可。。。

```c++

include<bits/stdc++.h>

using namespace std;

const int maxn = 1e5 + 5, mod = 1e9 + 7;

int n, m, fa[maxn], size[maxn], p[maxn];

set s;

set::iterator iter;

long long ans = 1;

inline int read()

{

int s = 0, w = 1; char ch = getchar();

while(ch <= '0' || ch > '9'){if(ch == '-') w = -1; ch = getchar();}

while(ch >= '0' && ch <= '9') s = s * 10 + ch - '0', ch = getchar();

return s * w;

}

int find(int t){return fa[t] == t ? t : (fa[t] = find(fa[t]));}

int main()

{

n = read(); m = read();

for(int i = 1; i <= n; ++i) fa[i] = i, p[i] = 1;

for(int a, b, A, B, i = 1; i <= m; ++i){

a = read(); b = read();

A = find(a); B = find(b); size[A]++;

if(A == B) continue;

if(A > B) swap(A, B);

fa[B] = A; size[A] += size[B]; p[A] += p[B];

}

for(int i = 1; i <= n; ++i) s.insert(find(i));

for(iter = s.begin(); iter != s.end(); ++iter){

int now = *iter;

if(size[now] > p[now]){cout << 0; return 0;}

if(size[now] == p[now]) ans = ans * 2 % mod;

if(size[now] < p[now]) ans = ans * p[now] % mod;

}

cout << ans;

return 0;

}

bzoj2582 [Usaco2012Jan]Bovine Alliance的更多相关文章

  1. 洛谷P3043 [USACO12JAN]牛联盟Bovine Alliance

    P3043 [USACO12JAN]牛联盟Bovine Alliance 题目描述 Bessie and her bovine pals from nearby farms have finally ...

  2. P3043 [USACO12JAN]牛联盟Bovine Alliance(并查集)

    P3043 [USACO12JAN]牛联盟Bovine Alliance 题目描述 Bessie and her bovine pals from nearby farms have finally ...

  3. bzoj258 [USACO 2012 Jan Gold] Bovine Alliance【巧妙】

    传送门1:http://www.usaco.org/index.php?page=viewproblem2&cpid=111 传送门2:http://www.lydsy.com/JudgeOn ...

  4. P3043 [USACO12JAN]牛联盟Bovine Alliance——并查集

    题目描述 给出n个点m条边的图,现把点和边分组,每条边只能和相邻两点之一分在一组,点可以单独一组,问分组方案数. (友情提示:每个点只能分到一条边,中文翻译有问题,英文原版有这样一句:The cows ...

  5. [USACO12JAN]牛联盟Bovine Alliance

    传送门:https://www.luogu.org/problemnew/show/P3043 其实这道题十分简单..看到大佬们在用tarjan缩点,并查集合并.... 蒟蒻渣渣禹都不会. 渣渣禹发现 ...

  6. BZOJ-USACO被虐记

    bzoj上的usaco题目还是很好的(我被虐的很惨. 有必要总结整理一下. 1592: [Usaco2008 Feb]Making the Grade 路面修整 一开始没有想到离散化.然后离散化之后就 ...

  7. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  8. POJ - 2183 Bovine Math Geniuses

    “模拟“题,运用哈希,不断地按照一定运算规律对一个结果进行计算,如果重复出现就停止并且输出该数.注意到仔细看题,这种题一定要细心! POJ - 2183 Bovine Math Geniuses Ti ...

  9. POJ 3047 Bovine Birthday 日期定周求 泽勒公式

    标题来源:POJ 3047 Bovine Birthday 意甲冠军:.. . 思考:式 适合于1582年(中国明朝万历十年)10月15日之后的情形 公式 w = y + y/4 + c/4 - 2* ...

随机推荐

  1. AI-Tensorflow-神经网络优化算法-梯度下降算法-学习率

    记录内容来自<Tensorflow实战Google一书>及MOOC人工智能实践 http://www.icourse163.org/learn/PKU-1002536002?tid=100 ...

  2. A星寻路

    逻辑代码 using System.Collections.Generic; using System.Text; using UnityEngine; namespace Game { public ...

  3. 数据库_MHA群集搭建

    MHA概念介绍,群集搭建与测试 一, MHA介绍 1.概念:MHA master high availability,由日本DeNA公司开发,解决mysql故障切换可以做到0-30秒,而且在故障切换过 ...

  4. C# 事务的创建,提交和回滚

    在C#中开启事务的步骤 01.调用SqlConnection对象的BeginTransaction()方法,创建一个SqlTransaction对象,标志事务开始. 02.将创建的SqlTransac ...

  5. java中的进制转换以及字符串类和数值类的相互转化

    import java.util.*; import java.io.*; import java.math.*; import java.math.*; public class Main { pu ...

  6. 机器学习:1.K近邻算法

    1.简单案例:预测男女,根据身高,体重,鞋码 import numpy as np import matplotlib import sklearn from skleran.neighbors im ...

  7. GET和POST是HTTP请求的两种基本方法,区别是什么!?

    GET和POST是HTTP请求的两种基本方法,要说它们的区别,接触过WEB开发的人都能说出一二. 最直观的区别就是GET把参数包含在URL中,POST通过request body传递参数. 你可能自己 ...

  8. SVN查看所有人的日志提交记录

    1. svn默认显示最近一周的文件提交和修改记录,怎么查看更长时间的日志记录呢? 2. TortoiseSVN 3. 点击show all 或者NEXT 100,就可显示更长时间的文件提交记录.

  9. 测试md代码折叠功能

    展开查看 System.out.println("Hello to see U!");

  10. LDD3 第9章 与硬件通信

    一.I/O端口和I/O内存 每种外设都通过读写寄存器进行控制.大部分外设都有几个寄存器,不管是在内村地址空间还是在I/O地址空间,这些寄存器的访问地址都是连续的. 在硬件层,内存区域和I/O区域没有区 ...