题意:N座高楼,高度均不同且为1~N中的数,从前向后看能看到F个,从后向前看能看到B个,问有多少种可能的排列数。

0 < N, F, B <= 2000

首先我们知道一个结论:n的环排列的个数与n-1个元素的排列的个数相等,因为P(n,n)/n=(n-1)!。

可以肯定,无论从最左边还是从最右边看,最高的那个楼一定是可以看到的.

假设最高的楼的位置固定,最高楼的编号为n,那么我们为了满足条件,可以在楼n的左边分x-1组,右边分y-1组,且用每

组最高的那个元素代表这一组,那么楼n的左边,从左到右,组与组之间最高的元素一定是单调递增的,且每组中的最高元

素一定排在该组的最左边,每组中的其它元素可以任意排列(相当于这个组中所有元素的环排列)。右边反之亦然。

然后,可以这样考虑这个问题,最高的那个楼左边一定有x-1个组,右边一定有y-1个组,且每组是一个环排列,这就引出

了第一类Stirling数(n个人分成k组,每组内再按特定顺序围圈的分组方法的数目)。

我们可以先把n-1个元素分成x-1+y-1组,然后每组内部做环排列。再在所有组中选取x-1组放到楼n的左边。所以答案是

ans(n, f, b) = C[f + b - 2][f - 1] * S[n - 1][f + b - 2];

#include <iostream>
#include <string.h>
#include <stdio.h> using namespace std;
typedef long long LL; const int N=2005;
const LL MOD=1000000007; LL C[N][N];
LL S[N][N]; void Init()
{
int i,j;
for(i=0;i<N;i++)
{
C[i][0]=1;
C[i][i]=1;
S[i][0]=0;
S[i][i]=1;
for(j=1;j<i;j++)
{
C[i][j]=(C[i-1][j]%MOD+C[i-1][j-1]%MOD)%MOD;
S[i][j]=((i-1)%MOD*S[i-1][j]%MOD+S[i-1][j-1]%MOD);
}
}
} int main()
{
LL t,n,f,b,ans;
Init();
scanf("%I64d",&t);
while(t--)
{
scanf("%I64d%I64d%I64d",&n,&f,&b);
ans=C[f+b-2][f-1]%MOD*S[n-1][f+b-2]%MOD;
printf("%I64d\n",ans);
}
return 0;
}
原文链接:https://blog.csdn.net/ACdreamers/article/details/9732431

  

HDU4372(第一类斯特林数)的更多相关文章

  1. HDU4372 Count the Buildings —— 组合数 + 第一类斯特林数

    题目链接:https://vjudge.net/problem/HDU-4372 Count the Buildings Time Limit: 2000/1000 MS (Java/Others)  ...

  2. 【HDU4372】Count the Buildings (第一类斯特林数)

    Description $N$座高楼,高度均不同且为$1~N$中的数,从前向后看能看到$F$个,从后向前看能看到$B$个,问有多少种可能的排列数. $T$组询问,答案模$1000000007$.其中$ ...

  3. 【HDU 4372】 Count the Buildings (第一类斯特林数)

    Count the Buildings Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  4. 【组合数学:第一类斯特林数】【HDU3625】Examining the Rooms

    Examining the Rooms Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  5. 如何快速求解第一类斯特林数--nlog^2n + nlogn

    目录 参考资料 前言 暴力 nlog^2n的做法 nlogn的做法 代码 参考资料 百度百科 斯特林数 学习笔记-by zhouzhendong 前言 首先是因为这道题,才去研究了这个玩意:[2019 ...

  6. 【2019雅礼集训】【CF 960G】【第一类斯特林数】【NTT&多项式】permutation

    目录 题意 输入格式 输出格式 思路 代码 题意 找有多少个长度为n的排列,使得从左往右数,有a个元素比之前的所有数字都大,从右往左数,有b个元素比之后的所有数字都大. n<=2*10^5,a, ...

  7. CF960G Bandit Blues 第一类斯特林数、NTT、分治/倍增

    传送门 弱化版:FJOI2016 建筑师 由上面一题得到我们需要求的是\(\begin{bmatrix} N - 1 \\ A + B - 2 \end{bmatrix} \times \binom ...

  8. 【CF715E】Complete the Permutations(容斥,第一类斯特林数)

    [CF715E]Complete the Permutations(容斥,第一类斯特林数) 题面 CF 洛谷 给定两个排列\(p,q\),但是其中有些位置未知,用\(0\)表示. 现在让你补全两个排列 ...

  9. 【CF960G】Bandit Blues(第一类斯特林数,FFT)

    [CF960G]Bandit Blues(第一类斯特林数,FFT) 题面 洛谷 CF 求前缀最大值有\(a\)个,后缀最大值有\(b\)个的长度为\(n\)的排列个数. 题解 完完全全就是[FJOI] ...

随机推荐

  1. python 反射、动态导入

    1. 反射 hasattr(obj,'name')            # 判断对象中是否含有字符串形式的方法名或属性名,返回True.False getattr(obj,'name',None)  ...

  2. Python使用XML操作mapnik,实现复杂标注(Multi line text symbolizer)

    test.py import mapnik stylesheet = 'world_style.xml' image = 'world_style.png' m = mapnik.Map(1200, ...

  3. ETL工具之——kettle使用简介

    ETL工具之——kettle使用简介 https://yq.aliyun.com/articles/157977?spm=5176.10695662.1996646101.searchclickres ...

  4. bing 精美壁纸获取方式

    右键检查 打开就行了

  5. centos7下open--v!(p/n)部署

    一,client-server 路由模式 使用tun,openssl,lzo压缩,启用转发,生成证书,关闭selinux 同步下时间 #1安装 yum -y install openvpn easy- ...

  6. 多module project修改module名称

    1.mvn clean 2.project 去掉这个module 3.全局替换所有pom.xml文件的老module名为新module名 4.修改源代码文件夹目录名为新的module名 5.proje ...

  7. php上传视频大文件

    理清思路: 引入了两个概念:块(block)和片(chunk).每个块由一到多个片组成,而一个资源则由一到多个块组成 块是服务端的永久数据存储单位,片则只在分片上传过程中作为临时存储的单位.服务端会以 ...

  8. java+web+批量下载文件

    JavaWeb 文件下载功能 文件下载的实质就是文件拷贝,将文件从服务器端拷贝到浏览器端,所以文件下载需要IO技术将服务器端的文件读取到,然后写到response缓冲区中,然后再下载到个人客户端. 1 ...

  9. 论文阅读:Stateless Network Functions: Breaking the Tight Coupling of State and Processing

    摘要: 无状态网络功能是一个新的网络功能虚拟化架构,解耦了现有的网络功能设计到无状态处理组件以及数据存储层,在打破紧密耦合的同时,实现了更具可伸缩性和可恢复性的网络功能基础设施.无状态NF处理实例是围 ...

  10. BZOJ 3168 Luogu P4100 [HEOI2013]钙铁锌硒维生素 (矩阵求逆、二分图匹配)

    线性代数+图论好题. 题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3168 (luogu) https://www.lu ...