luogu P4383 [九省联考2018]林克卡特树lct
题目操作有点奇怪,不过可以发现这就是把树先变成\(k+1\)个连通块,然后每个连通块选一条路径(本题中一个点也是一条路径),然后依次接起来.所以实际上要求的是选出\(k+1\)条点不相交的路径的最大权值和.可以先考虑暴力,设\(f_{i,j,0/1/2}\)表示第\(i\)个点的子树中,选了\(j\)条路径,点\(i\)当前和\(0/1/2\)个点有连边,转移可以参考代码
然后能发现这个答案随着\(k\)的增长是一个上凸函数,所以可以凸优化dp,即二分选一条路径的代价,然后dp就没有\(j\)的限制,但是要记录选的路径条数,同时每选一条路径要减去代价,根据选的路径条数和\(k+1\)的大小关系调整二分边界
//WA代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<vector>
#include<cmath>
#include<ctime>
#include<queue>
#include<map>
#include<set>
#define LL long long
#define db double
using namespace std;
const int N=2000+10;
const db eps=1e-6;
LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n;
db aa,bb,a[N],b[N],c[N],f[N],na[N],nb[N];
void cal(db m1,db m2)
{
for(int i=1;i<=n;++i)
{
f[i]=f[i-1],na[i]=na[i-1],nb[i]=nb[i-1];
if(f[i]<f[i-1]+a[i]-m1) f[i]=f[i-1]+a[i]-m1,na[i]=na[i-1]+1,nb[i]=nb[i-1];
if(f[i]<f[i-1]+b[i]-m2) f[i]=f[i-1]+b[i]-m2,na[i]=na[i-1],nb[i]=nb[i-1]+1;
if(f[i]<f[i-1]+c[i]-m1-m2) f[i]=f[i-1]+c[i]-m1-m2,na[i]=na[i-1]+1,nb[i]=nb[i-1]+1;
}
}
int main()
{
n=rd(),aa=rd(),bb=rd();
for(int i=1;i<=n;++i) scanf("%lf",&a[i]);
for(int i=1;i<=n;++i) scanf("%lf",&b[i]);
for(int i=1;i<=n;++i) c[i]=1.0-(1.0-a[i])*(1.0-b[i]);
db l1=0,r1=1,z1,z2;
while(r1-l1>eps)
{
db m1=(l1+r1)/2;
db l2=0,r2=1;
while(r2-l2>eps)
{
db m2=(l2+r2)/2;
cal(m1,m2);
if(nb[n]<=bb) z2=m2,r2=m2-eps;
else l2=m2+eps;
}
cal(m1,z2);
if(na[n]<=aa) z1=m1,r1=m1-eps;
else l1=m1+eps;
}
cal(z1,z2);
printf("%.5lf\n",f[n]+na[n]*z1+nb[n]*z2);
return 0;
}
luogu P4383 [九省联考2018]林克卡特树lct的更多相关文章
- 洛谷P4383 [八省联考2018]林克卡特树lct(DP凸优化/wqs二分)
题目描述 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的迷你挑战. 游戏中有一个叫做“LCT” 的挑 ...
- P4383 [八省联考2018]林克卡特树lct
题目链接 题意分析 一句话题意就是 : 让你选出\((k+1)\)条不相交的链 使得这些链的边权总和最大 (这些链可以是点) 我们考虑使用树形\(DP\) \(dp[i][j][0/1/2]\)表示以 ...
- P4383 [八省联考2018]林克卡特树lct 树形DP+凸优化/带权二分
$ \color{#0066ff}{ 题目描述 }$ 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的 ...
- [BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树
[BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树 题意 给定一个 \(n\) 个点边带权的无根树, 要求切断其中恰好 \(k\) 条边再连 \(k\) 条边权为 \(0\) ...
- LuoguP4383 [八省联考2018]林克卡特树lct
LuoguP4383 [八省联考2018]林克卡特树lct https://www.luogu.org/problemnew/show/P4383 分析: 题意等价于选择\(K\)条点不相交的链,使得 ...
- [八省联考2018]林克卡特树lct——WQS二分
[八省联考2018]林克卡特树lct 一看这种题就不是lct... 除了直径好拿分,别的都难做. 所以必须转化 突破口在于:连“0”边 对于k=0,我们求直径 k=1,对于(p,q)一定是从p出发,走 ...
- P4383 [八省联考2018]林克卡特树 树形dp Wqs二分
LINK:林克卡特树 作为树形dp 这道题已经属于不容易的级别了. 套上了Wqs二分 (反而更简单了 大雾 容易想到还是对树进行联通情况的dp 然后最后结果总和为各个联通块内的直径. \(f_{i,j ...
- [九省联考2018]林克卡特树(DP+wqs二分)
对于k=0和k=1的点,可以直接求树的直径. 然后对于60分,有一个重要的转化:就是求在树中找出k+1条点不相交的链后的最大连续边权和. 这个DP就好.$O(nk^2)$ 然后我们完全不可以想到,将b ...
- 洛谷 4383 [八省联考2018]林克卡特树lct——树形DP+带权二分
题目:https://www.luogu.org/problemnew/show/P4383 关于带权二分:https://www.cnblogs.com/flashhu/p/9480669.html ...
随机推荐
- Mongo Cursor
简介 在使用 Java 对数据库进行连接时,都会获取到一个 cursor ,cursor 实际指到的是我们查询数据库的query,而并不是 query 查询到的数据集. 此次在使用 mongo 的 c ...
- Pollard-rho算法[因子分解算法]
试除法:最简单的因数分解算法,从$ 2 $到$ \sqrt n $一个一个试. 试除法(改进):从$ 2 $到$ \sqrt n $挑素数一个一个试. 然而这样复杂度是相当高的. 生日悖论:指如果一个 ...
- 关于int,bool,str
今日主要内容 基本数据类型(int,bool,str) 1.基本数据数据类型: int 整数 str 字符串. 一般不存放大量的数据 bool 布尔值. 用来判断. True, False list ...
- 如何运行一个分布式的Maven项目
本人也属于一个新手小白,之前在公司运行的项目也都不涉及到maven...但是前两天运行一个maven项目的时候发现,第一次接触这个还是蛮让我措手不及的.在这里整理下自己当时走的弯路,或者遇到的一些问题 ...
- 在MVC项目中使用Ninject
项目结构图: App_start文件夹中的文件是VS自己创建的,其中NinjectWebCommon类在创建之初并不存在.后面会再次提到! 添加一个Home控制器.代码如下: using Essent ...
- How to solve the error "Field service in com.xx.xxx.xxxx required a bean of type 'com.aa.bb.cc' that could not be found."
When runung a SpringBoot demo, I got a error as following: *************************** APPLICATION ...
- Android6.0运行时权限的处理Demo
MainActivity.java package com.loaderman.permissionsdemo; import android.Manifest; import android.con ...
- java利用dom4j读取xml
java连接oracle数据库的时候, 需要从特定地方读取xml文件中的sql去get结果集, xml文件放在和java文件: SqlLoaderFromXML的目录下OracleSQL, xml文件 ...
- 2 Configuring SAP ERP Sales and Distribution -introduction to SAP
First Steps in SAPWe’ll now discuss some of the basic menus, screens, and transactions that you need ...
- java:IO流(File,字节流/输入输出流(InputStream(FileInputStream),OutputStream(FileOutStream)),字符流(Reader,Writer))
File: * java.io.File类:代表一个文件或目录. * 常用的构造方法: * File(String pathname)通过将给定路径名字符串转换为抽象路径名来创建一个新 File 实例 ...