最小生成树(Kruskal算法)模板
#include<iostream>
#include<algorithm> using namespace std; int f[],n; struct node
{
int u,v,val;
bool operator < (node&a) const
{
return val<a.val;
}
}e[]; int findx(int x)
{
if(x==f[x])return x;
return f[x]=findx(f[x]);
}
int main()
{
int k,ans,x,y;
while(cin>>n)
{
ans=;
k=(n*(n-))/;
for(int i=;i<=n;i++)
f[i]=i;
for(int i=;i<k;i++)
cin>>e[i].u>>e[i].v>>e[i].val;
sort(e,e+k);
for(int i=;i<k;i++)
{
x=findx(e[i].u);
y=findx(e[i].v);
if(x!=y)
{
ans+=e[i].val;
f[x]=y;
n--;
if(!n)break;
}
}
cout<<ans<<endl;
}
return ;
}
最小生成树(Kruskal算法)模板的更多相关文章
- 【转】最小生成树——Kruskal算法
[转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法 ...
- 模板——最小生成树kruskal算法+并查集数据结构
并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...
- 并查集与最小生成树Kruskal算法
一.什么是并查集 在计算机科学中,并查集是一种树型的数据结构,用于处理一些不交集的合并及查询问题.有一个联合-查找算法(union-find algorithm)定义了两个用于次数据结构的操作: Fi ...
- 【一个蒟蒻的挣扎】最小生成树—Kruskal算法
济南集训第五天的东西,这篇可能有点讲不明白提前抱歉(我把笔记忘到别的地方了 最小生成树 概念:一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的 ...
- 最小生成树Kruskal算法(1)
概念 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边. [1] 最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆) ...
- 最小生成树——kruskal算法
kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么 ...
- 最小生成树Kruskal算法
Kruskal算法就是把图中的所有边权值排序,然后从最小的边权值开始查找,连接图中的点,当该边的权值较小,但是连接在途中后会形成回路时就舍弃该边,寻找下一边,以此类推,假设有n个点,则只需要查找n-1 ...
- 最小生成树------Kruskal算法
Kruskal最小生成树算法的概略描述:1 T=Φ:2 while(T的边少于n-1条) {3 从E中选取一条最小成本的边(v,w):4 从E中删去(v,w):5 if((v,w)在T中不生成环) { ...
- 求最小生成树——Kruskal算法
给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这篇文章先介绍Kruskal算法. Kruskal算法的基本思想:先将所有边按权值从小到大排序,然后按顺 ...
- 最小生成树 kruskal算法&prim算法
(先更新到这,后面有时间再补,嘤嘤嘤) 今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径) 本Tianc在刚学的 ...
随机推荐
- Mybatis—动态sql拼接问题
背景:使用Mybatis的最近半年,经常发现一些小坑,现在总结回顾下,记个小本本,不让它再来欺负我! 百度了许久,才留心到官网文档,比我的全,我很菜的! *************<if> ...
- 只使用非递归的mutex
mutex分为递归(以下简写为rm)和非递归(以下简写为nrm)两种,它们的唯一区别在于:同一个线程可以重复对rm加锁,但是不能重复对nrm加锁. 虽然rm使用起来要更加方便一些,并且不用考虑一个线程 ...
- 使用before和after双伪元素清除浮动
使用方法: .clearfix:before,.clearfix:after { content:"."; display:table; } .clearfix:after { c ...
- yii日志保存机制
一.修改yii框架的配置文件(main.php) 'log' => array( 'class' => 'CLogRouter', 'routes' => array( array( ...
- Java中的四种权限修饰符
权限修饰符 public protected [default] private 同一个类 YES YES YES YES 同一个包 YES YES YES NO 不同包子类 YES YES NO ...
- jquery中的插件EChars的使用
首先,进入EChars的官网下载页面:http://echarts.baidu.com/download.html 下载自己需要的版本. 引入jquery包和echars,进入官网的实例:htt ...
- neo4j源码分析1-编译打包启动
date: 2018-03-22 title: "neo4j源码分析1-编译打包启动" author: "邓子明" tags: - 源码 - neo4j - 大 ...
- Tabcontrol动态添加TabPage(获取或设置当前选项卡及其属性)
http://blog.csdn.net/xiongxyt2/article/details/6920575 •MultiLine 属性用true 或false来确定是否可以多行显示 •Appeara ...
- layoutSubviews何时调用的问题(原文:http://www.cnblogs.com/pengyingh/articles/2417211.html)
今天跟旺才兄学习了一下UIView的setNeedsDisplay和setNeedsLayout方法.首先两个方法都是异步执行的.而setNeedsDisplay会调用自动调用drawRect方法,这 ...
- 用R语言提取数据框中日期对应年份(列表转矩阵)
用R语言提取数据框中日期对应年份(列表转矩阵) 在数据处理中常会遇到要对数据框中的时间做聚类处理,如从"%m/%d/%Y"中提取年份. 对应操作为:拆分成列表——列表转矩阵——利用 ...