*题目描述:

*输入:

修正一下
l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1
*输出:

*样例输入:
6 3
1 2 3 2 1 2
1 5
3 6
1 5
*样例输出:
1
2
1
*提示:

修正下:
n <= 40000, m <= 50000
*题解:
强制在线求区间众数。我们考虑将序列分块,对于每一个块,我们先维护0~当前块的每个数字的出现次数(这样的话我们就可以以O(1)的时间得到两个块之间某个数字的出现个数,类似于前缀和),这样做的空间和时间复杂度都是(sqrt(n) * n),然后我们再暴力预处理出块与块之间的答案,时间复杂度O(n * sqrt(n)),空间复杂度O(sqrt(n) * sqrt(n)) = O(n)。然后每个询问就和其他的分块题一样做就好了。
*代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath> #ifdef WIN32
#define LL "%I64d"
#else
#define LL "%lld"
#endif #ifdef CT
#define debug(...) printf(__VA_ARGS__)
#define setfile()
#else
#define debug(...)
#define filename ""
#define setfile() freopen(filename".in", "r", stdin); freopen(filename".out", "w", stdout);
#endif #define R register
#define getc() (S == T && (T = (S = B) + fread(B, 1, 1 << 15, stdin), S == T) ? EOF : *S++)
#define dmax(_a, _b) ((_a) > (_b) ? (_a) : (_b))
#define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
#define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0)
#define cmin(_a, _b) (_a > (_b) ? _a = (_b) : 0)
char B[1 << 15], *S = B, *T = B;
inline int FastIn()
{
R char ch; R int cnt = 0; R bool minus = 0;
while (ch = getc(), (ch < '0' || ch > '9') && ch != '-') ;
ch == '-' ? minus = 1 : cnt = ch - '0';
while (ch = getc(), ch >= '0' && ch <= '9') cnt = cnt * 10 + ch - '0';
return minus ? -cnt : cnt;
}
#define maxn 40010
int n, m, block, num, ans, anscnt;
int hash[maxn], a[maxn], id[maxn], cnt[maxn], Ans[210][210], Cnt[210][maxn];
int main()
{
// setfile();
n = FastIn(), m = FastIn();
block = sqrt(n); num = n / block;
R int tot = n;
for (R int i = 1; i <= n; ++i) a[i] = hash[i] = FastIn(), id[i] = i / block;
std::sort(hash + 1, hash + tot + 1);
tot = std::unique(hash + 1, hash + tot + 1) - hash - 1;
for (R int i = 1; i <= n; ++i)
a[i] = std::lower_bound(hash + 1, hash + tot + 1, a[i]) - hash;
// lisanhua
for (R int i = 0; i <= num; ++i)
for (R int j = 1; j < dmin((i + 1) * block, n + 1); ++j)
++Cnt[i][a[j]];
for (R int i = 0; i < num; ++i)
{
anscnt = 0;
for (R int j = i; j <= num; ++j)
{
for (R int k = j * block; k < dmin((j + 1) * block, n + 1); ++k)
++cnt[a[k]] > anscnt || (cnt[a[k]] == anscnt && a[k] < ans)
? anscnt = cnt[a[k]], ans = a[k]
: 0;
Ans[i][j] = ans;
}
memset(cnt, 0, sizeof(cnt));
}
ans = 0;
for (; m; --m)
{
R int ql = (FastIn() + ans - 1) % n + 1, qr = (FastIn() + ans - 1) % n + 1;
anscnt = 0;
if (ql > qr) std::swap(ql, qr);
if (id[ql] == id[qr])
{
for (R int i = ql; i <= qr; ++i)
++cnt[a[i]] > anscnt || (cnt[a[i]] == anscnt && a[i] < ans)
? anscnt = cnt[a[i]], ans = a[i]
: 0;
for (R int i = ql; i <= qr; ++i) --cnt[a[i]];
}
else
{
R int ls = id[ql] + 1, rs = id[qr] - 1;
ans = Ans[ls][rs]; anscnt = Cnt[rs][ans] - Cnt[ls - 1][ans];
for (R int i = ql; i < ls * block; ++i)
{
R int tmp = ++cnt[a[i]] + Cnt[rs][a[i]] - Cnt[ls - 1][a[i]];
tmp > anscnt || (tmp == anscnt && a[i] < ans)
? anscnt = tmp, ans = a[i]
: 0;
}
for (R int i = (rs + 1) * block; i <= qr; ++i)
{
R int tmp = ++cnt[a[i]] + Cnt[rs][a[i]] - Cnt[ls - 1][a[i]];
tmp > anscnt || (tmp == anscnt && a[i] < ans)
? anscnt = tmp, ans = a[i]
: 0;
}
for (R int i = ql; i < ls * block; ++i) --cnt[a[i]];
for (R int i = (rs + 1) * block; i <= qr; ++i) --cnt[a[i]];
}
printf("%d\n", ans = hash[ans]);
}
return 0;
}

【bzoj2724】[Violet 6]蒲公英的更多相关文章

  1. [BZOJ2724][Violet 6]蒲公英

    [BZOJ2724][Violet 6]蒲公英 试题描述 输入 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 输出 输入示 ...

  2. BZOJ2724 [Violet 6]蒲公英 分块

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2724.html 题目传送门 - BZOJ2724 题意 求区间最小众数,强制在线. $n$ 个数,$m ...

  3. bzoj2724: [Violet 6]蒲公英(离散化+分块)

    我好弱啊..这题调了2天QwQ 题目大意:给定一个长度为n(n<=40000)的序列,m(m<=50000)次询问l~r之间出现次数最多的数.(区间众数) 这题如果用主席树就可以不用处理一 ...

  4. bzoj2724: [Violet 6]蒲公英 分块 区间众数 论algorithm与vector的正确打开方式

    这个,要处理各个数的话得先离散,我用的桶. 我们先把每个块里的和每个块区间的众数找出来,那么在查询的时候,可能成为[l,r]区间的众数的数只有中间区间的众数和两边的数. 证明:若不是这里的数连区间的众 ...

  5. 【分块】bzoj2724 [Violet 6]蒲公英

    分块,离散化,预处理出: ①前i块中x出现的次数(差分): ②第i块到第j块中的众数是谁,出现了多少次. 询问的时候,对于整块的部分直接获得答案:对于零散的部分,暴力统计每个数出现的次数,加上差分的结 ...

  6. bzoj2724: [Violet 6]蒲公英(分块)

    传送门 md调了一个晚上最后发现竟然是空间开小了……明明算出来够的…… 讲真其实我以前不太瞧得起分块,觉得这种基于暴力的数据结构一点美感都没有.然而今天做了这道分块的题才发现分块的暴力之美(如果我空间 ...

  7. 【BZOJ2724】[Violet 6]蒲公英 分块+二分

    [BZOJ2724][Violet 6]蒲公英 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n ...

  8. BZOJ 2724: [Violet 6]蒲公英

    2724: [Violet 6]蒲公英 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1633  Solved: 563[Submit][Status ...

  9. BZOJ 2724: [Violet 6]蒲公英( 分块 )

    虽然AC了但是时间惨不忍睹...不科学....怎么会那么慢呢... 无修改的区间众数..分块, 预处理出Mode[i][j]表示第i块到第j块的众数, sum[i][j]表示前i块j出现次数(前缀和, ...

  10. BZOJ_2724_[Violet 6]蒲公英_分块

    BZOJ_2724_[Violet 6]蒲公英_分块 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod ...

随机推荐

  1. docker--docker compose 编排工具

    11 docker compose 编排工具 11.1 docker compose 介绍 根据前面所学的知识可知,想要使用Docker部署应用,就要先在应用中编写Dockerfile 文件来构建镜像 ...

  2. Ubuntu 安装nodejs最新版本

    sudo apt update -y   sudo apt install -y npm   sudo npm config set registry https://registry.npm.tao ...

  3. [19/05/27-星期一] JavaScript_ 条件语句(if语句)和循环语句(while 、for、do-while)

    一.条件语句 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <ti ...

  4. 网站私有CA证书制作

              所谓的网站安全证书 是通过在客户端浏览器和Web服务器之间建立一条SSL安全通道保证了双方传递信息的安全性,而且用户可以通过服务器证书验证他所访问的网站是否真实可靠. 大体步骤: ...

  5. JavaWeb返回Json格式数据JQuery Ajax无法解析的问题

    今天在写实验室的傻逼Java Web小项目的时候,有一个需要发布内容的地方,因为想做的让用户感觉优雅一点 所以就是用了Ajax来做,本来很简单的一个小玩意,竟然花了半个多小时的时间,主要是将时间花在了 ...

  6. java http请求工具整理

    处理了http 的get和post的请求,分别支持同步处理,异步处理两种方式下见代码. @Slf4jpublic class HttpUtils { /** * 同步请求http请求 不推荐 * * ...

  7. [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+并查集+启发式合并)

    [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+启发式合并) 题面 给出一个n个节点m条边的森林,每个节点都有一个权值.有两种操作: Q x y k查询点x到点y路径上所有的权值中 ...

  8. idea使用Vue的v-bind,v-on报错

    参考解决在WebStorm中使用Vue的v-bind,v-on报错 File-->Settings-->Editor-->Inspections-->XML 把 Unbound ...

  9. 剑指offer-回溯法-机器人的运动范围-python

    题目描述 地上有一个m行和n列的方格.一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子. 例如,当k为18时,机器人能 ...

  10. django事务模式

    from django.db import transaction from django.db import transaction with transaction.atomic(): obj = ...