【6.10校内test】T3 加分二叉树
感觉我超废
这道题当时压根就不会qwq(我倒是挺适合写rand的qwq)
对于暴力的做法:
- 输入数据,定义数组men[i][i]=v[i](输入的第二行);
- dfs:
- dfs 1—n,首先是几个临界状态:
- 当左或右子树为空,即L>R(use L and R replace l and r to be clear)时,返回1
- 当L==R时,显然它的分数为它本身,所以return d[L] or d[R]
- 还有一个小优化,就是当我们之前已经算过某一段[L,R]时,可以直接拿来取用,即if(mem[l][r]>0)return mem[l][r];
- dfs 1—n,首先是几个临界状态:
优化的效果:优化前:
优化后:
效果还是很明显的;
4.然后枚举每个点做这棵子树的根(for循环)这里为了一会输出前序遍历,所以要开数组root[i][j]记录每一段的根是什么;
- 前序遍历:前序遍历:先遍历根节点,然后左侧结点,右侧结点(根左右);(插一 句,对于三种顺序的遍历,我们可以这样理解:前序遍历,根在三个字的最前面(根左右);中序遍历,根在左右之间(左 根右);后序遍历,根在左右之后(左右根))因此我们的输出如下:
- 先判断L==R?输出L or R:继续;因为在dfs时我们并没有记录L==R时的root值(直接return 了)
- 判断输出解的范围,如果L>R显然接下来的输出都是无效的,直接return;
- 可以开始输出根root了,输出root[L][R]之后,再递归的输出左子树和右子树(先左后右)
以上就是暴力DFS的思路,以下是代码:
#include<iostream>
#include<cstdio>
using namespace std;
int n,v[],mem[][],root[][];
int dfs(int l,int r){
if(mem[l][r]>)return mem[l][r];//当这个点已经被计算过时,直接返回
if(l==r)return v[l];//当只有一个点时,它的值就为本身
if(r<l)return ;//当出现左右颠倒的情况,也就是空子树,加分为1
for(int i=l;i<=r;i++){//分别枚举每个点做子树的根
int p=dfs(l,i-)*dfs(i+,r)/*左子树的值×右子树的值*/+mem[i][i]/*+根结点的值*/;
if(p>mem[l][r]){
mem[l][r]=p;/*求最大值*/root[l][r]=i/*记录路径用来前序遍历*/;
}
}
return mem[l][r];
}
void print(int l,int r){//前序遍历
if(r<l)return;
if(l==r){printf("%d ",l);return;}
printf("%d ",root[l][r]);
print(l,root[l][r]-);
print(root[l][r]+,r);
}
int main(){
freopen("binary.in","r",stdin);
freopen("binary.out","w",stdout);
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&v[i]),mem[i][i]=v[i];
printf("%d\n",dfs(,n));
print(,n);
return ;
}
对于被称之为正解的做法:
区间dp的做法:
- 数组dp[i][j],表示区间[i,j)内的最高加分;
- 几种情况:
- 对于以一个点建子树,dp[i][i+1](因为是开区间,所以后面要+1)就是对应的输入的加分
- 对于以2~n个点建子树,需要一套for循环进行区间dp,最后的答案是dp[1][n+1];区间dp如下:
第一层for循环l:枚举以几个点建子树,可以是2~n;
第二层for循环i:枚举一个区间,需满足i+l<=n+1(举个例子:n=5,以两个点建子树时,i的取值分别为1,2,3,4,相应的区间为[1,2],[2,3],[3,4],[4,5])
第三层for循环k:枚举楼上划分出的区间内以哪个点为根,计算加分,记录其中的最大值(小注意:还要开一个数组用来前序遍历,遍历和dfs的思想是一样的,记录的话也一样,这里用w数组);
样例:

#include <iostream>
using namespace std;
int n;
int d[];
long long dp[][]; //dp[i][j] -> answer in [i,j)
int w[][];
void dfs(int l, int r)
{
cout << w[l][r] << ' ';
if (w[l][r] > l)
dfs(l, w[l][r]);
if (w[l][r] + < r)
dfs(w[l][r] + , r);
}
int main()
{
cin >> n;
for (int i = ; i <= n; i++)
cin >> dp[i][i + ], dp[i][i] = , w[i][i + ] = i;
for (int l = ; l <= n; l++)
{
for (int i = ; i + l <= n + ; i++)
{
int j = i + l;
for (int k = i; k < j; k++)
{
if (dp[i][k] * dp[k + ][j] + dp[k][k + ] > dp[i][j])
{
dp[i][j] = dp[i][k] * dp[k + ][j] + dp[k][k + ];
w[i][j] = k;
}
}
}
}
cout << dp[][n + ] << endl;
dfs(, n + );
}
end-
【6.10校内test】T3 加分二叉树的更多相关文章
- CODEVS1090 加分二叉树
codevs1090 加分二叉树 2003年NOIP全国联赛提高组 题目描述 Description 设一个n个节点的二叉树tree的中序遍历为(l,2,3,…,n),其中数字1,2,3,…,n为节点 ...
- NOIP2003加分二叉树[树 区间DP]
题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都 ...
- Vijos 1100 加分二叉树
题目 1100 加分二叉树 2003年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目描述 Description 设一个n个节点的二叉树tree的中序遍历为( ...
- CJOJ 1010【NOIP2003】加分二叉树 / Luogu 1040 加分二叉树(树型动态规划)
CJOJ 1010[NOIP2003]加分二叉树 / Luogu 1040 加分二叉树(树型动态规划) Description 设 一个 n 个节点的二叉树 tree 的中序遍历为( 1,2,3,-, ...
- P1040 加分二叉树
转自:(http://www.cnblogs.com/geek-007/p/7197439.html) 经典例题:加分二叉树(Luogu 1040) 设一个 n 个节点的二叉树 tree 的中序遍历为 ...
- 洛谷P1040 加分二叉树(树形dp)
加分二叉树 时间限制: 1 Sec 内存限制: 125 MB提交: 11 解决: 7 题目描述 设一个n个节点的二叉树tree的中序遍历为(l,2,3,...,n),其中数字1,2,3,...,n ...
- 【洛谷】P1040 加分二叉树
[洛谷]P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数 ...
- [洛谷P1040] 加分二叉树
洛谷题目链接:加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,-,n),其中数字1,2,3,-,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di ...
- 洛谷P1040 加分二叉树(区间dp)
P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di, ...
随机推荐
- Mysql包的下载
官方下载地址: https://dev.mysql.com/downloads/mysql/5.5.html#downloads mysql的下载界面 二进制的包 通用的RPM包 源码包
- PHP 字符串相关常识
0x00 前言 第一次遇见字符串这个概念是在学 C 语言的时候,那时候觉得字符串也没有什么难的,不就是一个以 \0 结尾的 char 数组而已咯.后来在学习 PHP 的过程中也同样保持这个观念,不过在 ...
- 【java工具类】删除文件及目录
FileUtil.java /** * 删除文件及目录 * @param file; */ public static boolean delFile(File file) { if (!file.e ...
- UVa 11235 Frequent values (RMQ && 区间出现最多次的数的次数)
题意 : 给出一个长度为 n 的不降序序列,并且给出 q 个形如(L, R)的问询,问你这个区间出现的最多次的数的次数. 分析 : 很自然的想到将区间“缩小”,例如1 1 2 3 3 3就可以变成2 ...
- sh_04_累加求和
sh_04_累加求和 # 计算 0 ~ 100 之间所有数字的累计求和结果 # 0. 定义最终结果的变量 result = 0 # 1. 定义一个整数的变量记录循环的次数 i = 0 # 2. 开始循 ...
- GAN one-shot
基于one-shot的GAN生成图片 GAN的学习资料用于数据增广GAN的调研: https://zhuanlan.zhihu.com/p/32103958 GAN的各种paper汇集(包括Gener ...
- 大数据笔记(二十三)——Scala语言基础
一.Scala简介:一种多范式的编程语言 (*)面向对象 (*)函数式编程:Scala的最大特点 (*)基于JVM 二.Scala的运行环境 (1)命令行:REPL 进入: scala 退出::qui ...
- springcloud(十七):服务网关 Spring Cloud GateWay 熔断、限流、重试
上篇文章介绍了 Gataway 和注册中心的使用,以及 Gataway 中 Filter 的基本使用,这篇文章我们将继续介绍 Filter 的一些常用功能. 修改请求路径的过滤器 StripPrefi ...
- 几种常见的CSS布局
本文概要 本文将介绍如下几种常见的布局: 其中实现三栏布局有多种方式,本文着重介绍圣杯布局和双飞翼布局.另外几种可以猛戳实现三栏布局的几种方法 一.单列布局 常见的单列布局有两种: header,co ...
- 20175221 《Java程序设计》第10周学习总结
20175221 <Java程序设计>第10周学习总结 教材学习内容总结 第十二章主要内容有: 进程与线程 进程是程序的一次动态执行过程,它对应了从代码加载.执行至执行完毕的一个完整过 ...