题面:

最大连续子序列
Time Limit: 2000/1000 MS (Java/Others)
Memory Limit: 65536/32768 K (Java/Others)

Problem Description
给定K个整数的序列{ N1, N2, …, NK },其任意连续子序列可表示为{ Ni, Ni+1, …,
Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,
例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和
为20。
在今年的数据结构考卷中,要求编写程序得到最大和,现在增加一个要求,即还需要输出该
子序列的第一个和最后一个元素。

Input
测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( < 10000 ),第2行给出K个整数,中间用空格分隔。当K为0时,输入结束,该用例不被处理。

Output
对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元
素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。

Sample Input
6
-2 11 -4 13 -5 -2
10
-10 1 2 3 4 -5 -23 3 7 -21
6
5 -8 3 2 5 0
1
10
3
-1 -5 -2
3
-1 0 -2
0

Sample Output
20 11 13
10 1 4
10 3 5
10 10 10
0 -1 -2
0 0 0

题解:

我们很容易想到的一个方法是维护前缀和,因为连续子序列的元素和等于两个前缀和之差,然后我们只要枚举两个前缀和就可以了
时间复杂度O(k2)O(k2)

s[0]=0;
for(int i=1;i<=n;i++)s[i]=s[i-1]+a[i]
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++) maxsum=max(s[j]-s[i-1],maxsum)
}

由于k<104k<104,这样的算法很明显会TLE

许多人第一次看到这道题时会想到最长上升子序列,想用DP求解,事实上这个思路是正确的。
现在我们来推导状态转移方程
子状态:f[i]f[i]表示在ii位置的最大连续子序列
(1)a[i]a[i]与a[i−1]a[i−1]构成连续子序列,则ii处的最大连续子序列值等于i−1i−1处的最大连续子序列值+a[i]a[i]
(2)a[i]a[i]构成新一个子序列,最大连续子序列值等于a[i]a[i]
状态转移方程:f[i]=max(f[i−1]+a[i],a[i])f[i]=max(f[i−1]+a[i],a[i])
时间复杂度O(k)O(k)
代码如下:

#include<iostream>
#include<cstring>
#define maxn 10005
using namespace std;
int k;
int a[maxn],f[maxn];
int ax,ay, asum;
inline int fastread() {//数据量大,用快速读入
int x=0,sign=1,c=getchar();
while(c<'0'||c>'9') {
if(c=='-') sign=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*sign;
}
int main() {
int flag;
while(cin>>k&&k!=0) {
flag=0;
asum=ax=ay=0;
f[0]=0;//记得初始化
for(int i=1;i<=k;i++) {
a[i]=fastread();
if(a[i]<0) flag++;
}
if(flag==k) {//全是负数时的特判
printf("0 %d %d\n",a[1],a[k]);
continue;
}
for(int i=1;i<=k;i++) {
if(f[i-1]+a[i]>a[i]) f[i]=f[i-1]+a[i];//dp
else f[i]=a[i];
if(f[i]>asum){
asum=f[i];//更新最大和
ay=i;//更新右端点
}
}
int tmp=0;
for(int i=ay;i>=1;i--){//由右端点反推左端点
tmp+=a[i];
if(tmp==asum){
ax=i;
break;
}
}
printf("%d %d %d\n",asum,a[ax],a[ay]);
}
}

HDU 1231 题解的更多相关文章

  1. HDU 1231 最大连续子序列 --- 入门DP

    HDU 1231 题目大意以及解题思路见: HDU 1003题解,此题和HDU 1003只是记录的信息不同,处理完全相同. /* HDU 1231 最大连续子序列 --- 入门DP */ #inclu ...

  2. HDU 1231 最大连续子序列 &&HDU 1003Max Sum (区间dp问题)

    C - 最大连续子序列 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit ...

  3. HDU 1231.最大连续子序列-dp+位置标记

    最大连续子序列 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  4. hdu 1003 hdu 1231 最大连续子序列【dp】

    HDU1003 HDU1231 题意自明.可能是真的进步了点,记得刚开始研究这个问题时还想了好长时间,hdu 1231还手推了很长时间,今天重新写干净利落就AC了. #include<iostr ...

  5. HDU 1231 最大连续子序列:水dp

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1231 题意: 给你一个整数序列,求连续子序列元素之和最大,并输出该序列的首尾元素(若不唯一,输出首坐标 ...

  6. 最大连续子序列 -- hdu -- 1231

    http://acm.hdu.edu.cn/showproblem.php?pid=1231 最大连续子序列 Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  7. HDU 1231 最大子序列

    http://acm.hdu.edu.cn/showproblem.php?pid=1231 Problem Description 给定K个整数的序列{ N1, N2, ..., NK },其任意连 ...

  8. DP专题训练之HDU 1231 最大连续子序列

    Description 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j < ...

  9. HDU 2023题解分析

    我想说这道题我还没弄明白我错哪了,交了20多遍一直都是Runtime Error,改了N次还是不对,后来搜了一下,说是数组开小了,又把数组开大,还不对,又改发现一个平均值求错,再改,还不对,洗洗睡吧. ...

随机推荐

  1. J2EE知识总结——面试、笔试

    9.2 jdk 1.8的新特性(核心是Lambda 表达式) 参考链接:http://www.bubuko.com/infodetail-690646.html (1)接口的默认方法 (给接口添加一个 ...

  2. UFUN函数 UF_TRNS(平移 变换)( uf5943 , uf5947)

    //设置class_dialog选择过滤 static int init_proc(UF_UI_selection_p_t select,void* user_data) { ; //实体 片体 UF ...

  3. html aside标签 语法

    html aside标签 语法 aside是什么意思? aside为语义化标签,通常用来描述与文档主体内容不相关的内容,其aside标签的内容应该与附近的内容相关. 作用:定义其所处内容之外的内容.直 ...

  4. 数据:ContentResolver类

    ContentResolver是通过URI来查询ContentProvider中提供的数据.除了URI以 外,还必须知道需要获取的数据段的名称,以及此数据段的数据类型.   如果你需要获取一个特定的记 ...

  5. 洛谷P3948 数据结构——题解

    题目传送 感觉这道题秀了我一地的智商... 审题没审好,没确定带修改的操作中询问的次数<=1000,且max和min都是事先给好.不变的.想了半天线段树.分块,却忘了最基础的暴力. 写不出题时先 ...

  6. python3:csv的读写

    前言快要毕业那会儿,在下编写了一个招聘网站招聘岗位的爬虫提供给前女神参考,最开始我是存到mysql中,然后在到处一份csv文件给前女神.到了参加工作后,由于经常使用excel绘制图表(谁叫公司做报表全 ...

  7. [BZOJ3453]tyvj 1858 XLkxc:拉格朗日插值

    分析 之前一直不知道拉格朗日插值是干什么用的,只会做模板题,做了这道题才明白这个神奇算法的用法. 由题意可知,\(f(x)\)是关于\(x\)的\(k+1\)次函数,\(g(x)\)是关于\(x\)的 ...

  8. [HNOI2015]菜肴制作贪心的证明

    [HNOI2015]菜肴制作贪心的证明 先吐槽一句为什么网上都没人证这个东西,我觉得一点也不显然啊... 判环不用说了,现在处理一个DAG.考虑按题意模拟:建反图(边从后选的点连向先选的点),每次找全 ...

  9. http三次握手,四次挥手

    本文经过借鉴书籍资料.他人博客总结出的知识点,欢迎提问 序列号seq:占4个字节,用来标记数据段的顺序,TCP把连接中发送的所有数据字节都编上一个序号,第一个字节的编号由本地随机产生:给字节编上序号后 ...

  10. [CSP-S模拟测试]:maze(二分答案+最短路)

    题目传送门(内部题88) 输入格式 第一行两个数$n,m$.第二行四个数$sx,sy,tx,ty$.分别表示起点所在行数.列数,终点所在行数.列数.接下来$n$行,每行$m$个数,描述迷宫.最后一行一 ...