在springboot的启动类中引入

@Bean
public IdWorker idWorkker(){
return new IdWorker(1, 1);
}

在代码中调用

@Autowired
private IdWorker idWorker; user.setId( idWorker.nextId()+"" );

snowflake(雪花)算法源码复制即用

package util;

import java.lang.management.ManagementFactory;
import java.net.InetAddress;
import java.net.NetworkInterface; /**
* <p>名称:IdWorker.java</p>
* <p>描述:分布式自增长ID</p>
* <pre>
* Twitter的 Snowflake JAVA实现方案
* </pre>
* 核心代码为其IdWorker这个类实现,其原理结构如下,我分别用一个0表示一位,用—分割开部分的作用:
* 1||0---0000000000 0000000000 0000000000 0000000000 0 --- 00000 ---00000 ---000000000000
* 在上面的字符串中,第一位为未使用(实际上也可作为long的符号位),接下来的41位为毫秒级时间,
* 然后5位datacenter标识位,5位机器ID(并不算标识符,实际是为线程标识),
* 然后12位该毫秒内的当前毫秒内的计数,加起来刚好64位,为一个Long型。
* 这样的好处是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和机器ID作区分),
* 并且效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。
* <p>
* 64位ID (42(毫秒)+5(机器ID)+5(业务编码)+12(重复累加))
*
* @author Polim
*/
public class IdWorker {
// 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动)
private final static long twepoch = 1288834974657L;
// 机器标识位数
private final static long workerIdBits = 5L;
// 数据中心标识位数
private final static long datacenterIdBits = 5L;
// 机器ID最大值
private final static long maxWorkerId = -1L ^ (-1L << workerIdBits);
// 数据中心ID最大值
private final static long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
// 毫秒内自增位
private final static long sequenceBits = 12L;
// 机器ID偏左移12位
private final static long workerIdShift = sequenceBits;
// 数据中心ID左移17位
private final static long datacenterIdShift = sequenceBits + workerIdBits;
// 时间毫秒左移22位
private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; private final static long sequenceMask = -1L ^ (-1L << sequenceBits);
/* 上次生产id时间戳 */
private static long lastTimestamp = -1L;
// 0,并发控制
private long sequence = 0L; private final long workerId;
// 数据标识id部分
private final long datacenterId; public IdWorker(){
this.datacenterId = getDatacenterId(maxDatacenterId);
this.workerId = getMaxWorkerId(datacenterId, maxWorkerId);
}
/**
* @param workerId
* 工作机器ID
* @param datacenterId
* 序列号
*/
public IdWorker(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
}
/**
* 获取下一个ID
*
* @return
*/
public synchronized long nextId() {
long timestamp = timeGen();
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
} if (lastTimestamp == timestamp) {
// 当前毫秒内,则+1
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
// 当前毫秒内计数满了,则等待下一秒
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0L;
}
lastTimestamp = timestamp;
// ID偏移组合生成最终的ID,并返回ID
long nextId = ((timestamp - twepoch) << timestampLeftShift)
| (datacenterId << datacenterIdShift)
| (workerId << workerIdShift) | sequence; return nextId;
} private long tilNextMillis(final long lastTimestamp) {
long timestamp = this.timeGen();
while (timestamp <= lastTimestamp) {
timestamp = this.timeGen();
}
return timestamp;
} private long timeGen() {
return System.currentTimeMillis();
} /**
* <p>
* 获取 maxWorkerId
* </p>
*/
protected static long getMaxWorkerId(long datacenterId, long maxWorkerId) {
StringBuffer mpid = new StringBuffer();
mpid.append(datacenterId);
String name = ManagementFactory.getRuntimeMXBean().getName();
if (!name.isEmpty()) {
/*
* GET jvmPid
*/
mpid.append(name.split("@")[0]);
}
/*
* MAC + PID 的 hashcode 获取16个低位
*/
return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1);
} /**
* <p>
* 数据标识id部分
* </p>
*/
protected static long getDatacenterId(long maxDatacenterId) {
long id = 0L;
try {
InetAddress ip = InetAddress.getLocalHost();
NetworkInterface network = NetworkInterface.getByInetAddress(ip);
if (network == null) {
id = 1L;
} else {
byte[] mac = network.getHardwareAddress();
id = ((0x000000FF & (long) mac[mac.length - 1])
| (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6;
id = id % (maxDatacenterId + 1);
}
} catch (Exception e) {
System.out.println(" getDatacenterId: " + e.getMessage());
}
return id;
}
}

分布式ID生成器 snowflake(雪花)算法的更多相关文章

  1. 分布式id生成器,雪花算法IdWorker

    /** * <p>名称:IdWorker.java</p> * <p>描述:分布式自增长ID</p> * <pre> * Twitter的 ...

  2. 分布式id的生成方式——雪花算法

    雪花算法是twitter开源的一个算法. 由64位0或1组成,其中41位是时间戳,10位工作机器id,12位序列号,该类通过方法nextID()实现id的生成,用Long数据类型去存储. 我们使用id ...

  3. 分布式ID方案SnowFlake雪花算法分析

    1.算法 SnowFlake算法生成的数据组成结构如下: 在java中用long类型标识,共64位(每部分用-分开): 0 - 0000000000 0000000000 0000000000 000 ...

  4. 说起分布式自增ID只知道UUID?SnowFlake(雪花)算法了解一下(Python3.0实现)

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_155 但凡说起分布式系统,我们肯定会对一些海量级的业务进行分拆,比如:用户表,订单表.因为数据量巨大一张表完全无法支撑,就会对其进 ...

  5. 分布式Snowflake雪花算法

    前言 项目中主键ID生成方式比较多,但是哪种方式更能提高的我们的工作效率.项目质量.代码实用性以及健壮性呢,下面作了一下比较,目前雪花算法的优点还是很明显的. 优缺点比较 UUID(缺点:太长.没法排 ...

  6. 来吧,自己动手撸一个分布式ID生成器组件

    在经过了众多轮的面试之后,小林终于进入到了一家互联网公司的基础架构组,小林目前在公司有使用到架构组研究到分布式id生成器,前一阵子大概看了下其内部的实现,发现还是存在一些架构设计不合理之处.但是又由于 ...

  7. 常用的分布式ID生成器

    为何需要分布式ID生成器 **本人博客网站 **IT小神 www.itxiaoshen.com **拿我们系统常用Mysql数据库来说,在之前的单体架构基本是单库结构,每个业务表的ID一般从1增,通过 ...

  8. .Net Core ORM选择之路,哪个才适合你 通用查询类封装之Mongodb篇 Snowflake(雪花算法)的JavaScript实现 【开发记录】如何在B/S项目中使用中国天气的实时天气功能 【开发记录】微信小游戏开发入门——俄罗斯方块

    .Net Core ORM选择之路,哪个才适合你   因为老板的一句话公司项目需要迁移到.Net Core ,但是以前同事用的ORM不支持.Net Core 开发过程也遇到了各种坑,插入条数多了也特别 ...

  9. 分布式ID生成器PHP+Swoole实现(上) - 实现原理

    1.发号器介绍 什么是发号器? 全局唯一ID生成器,主要用于分库分表唯一ID,分布式系统数据的唯一标识. 是否需要发号器? 1)是否需要全局唯一. 分布式系统应该不受单点递增ID限制,中心式的会涉及到 ...

随机推荐

  1. python 模块发布及使用

    将模块(此处名为nester)写好后,与setup.py放入同一个文件夹中: //setup.py from distutils.core import setup setup( name=" ...

  2. Java组合算法

    这是一个简单的问题,大一刚学编程的时候做的笔记. 打印出从1.2.3……n中取出r个数的不同组合(n>=r>=1) 例如n=3,r=2,输出: 1,2 2,3 下面是实现的代码: publ ...

  3. vimdiff 可视化比较工具

    1.命令功能 vimdiff调用vim打开文件,可以同时打开2~4个文件,最多4个文件,且会以不同的颜色来区分文件的差异. 2.语法格式 vimdiff file1 file2 3.使用范例 [roo ...

  4. 安装php-solr扩展

    本人qq群也有许多的技术文档,希望可以为你提供一些帮助(非技术的勿加). QQ群:   281442983 (点击链接加入群:http://jq.qq.com/?_wv=1027&k=29Lo ...

  5. httprunner

    https://cn.httprunner.org/quickstart/ httprunner官方 https://testerhome.com/opensource_projects/httpru ...

  6. Spring源码--Bean的管理总结(一)

    前奏 最近看了一系列解析spring管理Bean的源码的文章,在这里总结下,方便日后复盘.文章地址https://www.cnblogs.com/CodeBear/p/10336704.html sp ...

  7. python数组中在某一元素前插入数据

    # 已知有一个已经排好序的数组.要求是,有一个新数据项,要求按原来的规律将它插入数组中. a=[1,2,3,4,5,6,7,8,9]num=int(input("input num:&quo ...

  8. 网络编程基础-socket的简单实用

    目录 1.软件开发架构 客户端与服务端的作用 C/S架构: B/S架构: 2.网络编程 3.互联网协议 socket: socket的具体工作流程: socket(套接字)的内置方法 1.软件开发架构 ...

  9. mysql——批量插入数据

    要测试一下新功能,需要测试环境下的数据库有大量的数据,一个个插入显然不现实,需要了解一下存储过程 https://www.cnblogs.com/endtel/p/5407455.html Navic ...

  10. 【leetcode】581. Shortest Unsorted Continuous Subarray

    题目如下: 解题思路:本题我采用的是最简单最直接最粗暴的方法,把排序后的nums数组和原始数组比较即可得到答案. 代码如下: /** * @param {number[]} nums * @retur ...