首先请连矩阵乘法乘法都还没有了解的同学简单看一下这篇博客:

https://blog.csdn.net/weixin_44049566/article/details/88945949

首先直接暴力求使用O(n)的时间复杂度肯定是不行的,所以我们应该使用更优的时间复杂度。

设f(n)为裴波那契数列第n项。让我们来构造两个矩阵:

和.

现在我们不妨将两个矩阵相乘,化简过后可以得到:,也就是.

如果再将得到的新矩阵乘以,便可以得到。

也就是我们想得到第n项,就可以这么实现:,也就是。

看到幂我们就可以想到快速幂,所以最后程序的时间复杂度便是O(log n)。

代码

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; #define N 10
#define LL long long int n,mod; struct Matrix {
LL n,m,c[N][N];
Matrix() { memset(c,0,sizeof(c)); };
void _read() {
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%lld",&c[i][j]);
}
Matrix operator * (const Matrix& a) {
Matrix r;
r.n=n;r.m=a.m;
for(int i=1;i<=r.n;i++)
for(int j=1;j<=r.m;j++)
for(int k=1;k<=m;k++)
r.c[i][j]= (r.c[i][j]+ (c[i][k] * a.c[k][j])%mod)%mod;
return r;
}
void _print() {
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
if(j!=1) cout<<" ";
cout<<c[i][j];
}
if(i!=n) puts("");
}
}
Matrix _power(int indexx) {
Matrix tmp,sum;tmp._pre1();sum._pre1();
while(indexx>0) {
if(indexx&1) sum=sum*tmp;
tmp=tmp*tmp;
indexx/=2;
}
return sum;
}
void _pre1() {
n=m=2;
c[1][1]=0;
c[1][2]=c[2][1]=c[2][2]=1;
}
void _pre2() {
n=1,m=2;
c[1][1]=c[1][2]=1;
} }T,ans; int main() {
cin>>n>>mod;
ans._pre2();
T._pre1();
if(n<=2) { cout<<1; return 0; }
T=T._power(n-3);
ans=ans*T;
cout<<ans.c[1][2];
}
那么前n项之和呢? 这里我们可以这么构造两个矩阵:(S(n)为前n项之和) 和将两个矩阵相乘,剩下的留给读者思考。 这里给出代码: #include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; #define N 10
#define LL long long int n,mod; struct Matrix {
LL n,m,c[N][N];
Matrix() { memset(c,0,sizeof(c)); };
void _read() {
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%lld",&c[i][j]);
}
Matrix operator * (const Matrix& a) {
Matrix r;
r.n=n;r.m=a.m;
for(int i=1;i<=r.n;i++)
for(int j=1;j<=r.m;j++)
for(int k=1;k<=m;k++)
r.c[i][j]= (r.c[i][j]+ (c[i][k] * a.c[k][j])%mod)%mod;
return r;
}
void _print() {
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
if(j!=1) cout<<" ";
cout<<c[i][j];
}
if(i!=n) puts("");
}
}
Matrix _power(int indexx) {
Matrix tmp,sum;tmp._pre1();sum._pre1();
while(indexx>0) {
if(indexx&1) sum=sum*tmp;
tmp=tmp*tmp;
indexx/=2;
}
return sum;
}
void _pre1() {
n=m=3;
c[3][2]=c[3][3]=c[2][3]=c[1][1]=c[2][1]=c[3][1]=1;
}
void _pre2() {
n=1,m=3;
c[1][1]=2;c[1][3]=c[1][2]=1;
} }T,ans; int main() {
cin>>n>>mod;
if(n==2) return printf("%d",2%mod),0;
if(n==1) return printf("%d",1%mod),0;
ans._pre2();
T._pre1();
if(n<=2) { cout<<1; return 0; }
T=T._power(n-3);
ans=ans*T;
cout<<ans.c[1][1];
}

浅谈矩阵加速——以时间复杂度为O(log n)的算法实现裴波那契数列第n项及前n之和使用矩阵加速法的优化求法的更多相关文章

  1. [矩阵乘法]裴波拉契数列II

    [ 矩 阵 乘 法 ] 裴 波 拉 契 数 列 I I [矩阵乘法]裴波拉契数列II [矩阵乘法]裴波拉契数列II Description 形如 1 1 2 3 5 8 13 21 34 55 89 ...

  2. [矩阵乘法]裴波拉契数列III

    [ 矩 阵 乘 法 ] 裴 波 拉 契 数 列 I I I [矩阵乘法]裴波拉契数列III [矩阵乘法]裴波拉契数列III Description 求数列f[n]=f[n-1]+f[n-2]+1的第N ...

  3. 斐波那契数列第N项f(N)[矩阵快速幂]

    矩阵快速幂 定义矩阵A(m*n),B(p*q),A*B有意义当且仅当n=p.即A的列数等于B的行数. 且C=A*B,C(m*q). 例如: 进入正题,由于现在全国卷高考不考矩阵,也没多大了解.因为遇到 ...

  4. 51nod--1242 斐波那契数列第N项 (矩阵乘法优化)

    题目: 1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) ...

  5. 斐波那契数列F(n)【n超大时的(矩阵加速运算) 模板】

    hihocoder #1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个 ...

  6. poj3070 求斐波那契数列第n项 ——矩阵快速幂

    题目:http://poj.org/problem?id=3070 用矩阵快速幂加速递推. 代码如下: #include<iostream> #include<cstdio> ...

  7. 【矩阵乘法】【快速幂】【递推】斐波那契数列&&矩乘优化递推模板

    题目大意: F[0]=0 F[1]=1 F[n+2]=F[n+1]+F[n] 求F[n] mod 104. F[n+2] F[n+1] = 1 1 1 0 * F[n+1] F[n] 记这个矩阵为A, ...

  8. HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  9. HDU----(4549)M斐波那契数列(小费马引理+快速矩阵幂)

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

随机推荐

  1. 免费申请 QQ 免费靓号

    打开网址:https://ssl.zc.qq.com/v3/index-chs.html?type=3 说明:靓号一般分为 9位靓号 or 带有寓意的号码 激活规则:获取的"靓号" ...

  2. #pragma 的使用(转)

    尽管 C 和 C++ 都已经有标准,但是几乎每个编译器 (广义,包含连接器等) 扩展一些 C/C++ 关键字. 合理地应用这些关键字,有时候能使我们的工作非常方便.下面随便说说 Visual C++ ...

  3. linux局域网通过映射(双网卡)访问外网

    图示说明: 1.IP规划设置 主机名 ip地址 ip地址(第二个网卡配置的地址) 地址类别 oldboy01 192.168.10.20 空 仅可访问内网主机 oldboy02 192.168.10. ...

  4. 简单后台登录逻辑实现Controller

    package com.fei.controller.admin; import javax.servlet.http.HttpSession; import org.springframework. ...

  5. Debian10+OpenMediaVault(OMV)安装

    前言:测试打造NAS平台,以下是步骤. 安装Debian10 注:请下载amd64,不要下载i836平台,因为OMV外挂插件不支持I836所以不建议用i836,如只使用官方插件可以无视 安装前-安装, ...

  6. SpringCloud创建Eureka

    Eureka是什么 Eureka是Netflix的一 个子模块,也是核心模块之一- .Eureka是一 个基于REST的服务,用于定位服务,以实现云端中间层服务发现和故障转移.服务注册与发现对于微服务 ...

  7. 【leetcode】1170. Compare Strings by Frequency of the Smallest Character

    题目如下: Let's define a function f(s) over a non-empty string s, which calculates the frequency of the ...

  8. Mybatis foreach批量插入

    1.foreach的属性 item:集合中元素迭代时的别名,必填 index:在list和array中,index是元素的序号:在map中,index是元素的key,可选 open:foreach代码 ...

  9. linux运维、架构之路-linux目录结构

    1.linux重要目录 重要目录 说明 /etc 存放系统配置文件.服务启动命令的目录 /root 超级管理员的家目录 /sbin和usr/sbin 超级用户命令的目录 /boot 系统引导程序所在的 ...

  10. JSP实现大文件上传和下载

    javaweb上传文件 上传文件的jsp中的部分 上传文件同样可以使用form表单向后端发请求,也可以使用 ajax向后端发请求 1.通过form表单向后端发送请求 <form id=" ...