opengl中相关的计算机图形变换矩阵之:齐次坐标 (摘编)
模型视图变换(几何变换)矩阵:
1. 齐次坐标:两条平行线也可以相交。

欧式空间对2D/3D空间的描述恰到好处,但是对投影空间就力不能及了(事实上,欧式空间是投影空间的一个子集)。
通常在二维空间中,我们把一个点表示为(x, y),那么如果这个点位于无限远又如何表示呢?一般是 (∞,∞),
而这样一个数学符号对我们的意义就太小了,因为它很难进行计算和变换。
为了描述“在无限远处”相交这个情景,数学家们发明了另一种坐标系,即齐次坐标系。
解决方案:齐次坐标系
简单来说,齐次坐标系就是使用N+1个数来表示N维欧式空间的方式,比如欧式空间中有一点(X,Y),那么在齐次空间中将被表示为(x,y,w),其中W为投影变量,W的作用就是把齐次空间转换回欧式空间:
X = x/w
Y = y/w
举个例子来说,欧式空间中有一点(1, 2),在齐次空间中将被表示为(1,2,1). 如果这个点向无限远处运动变成了(∞,∞),齐次坐标就可以表示为(1,2,0),因为1/0和2/0正好也是无限大。也就是说,我们可以不使用"∞"就可以表示无限大了。
验证
回到我们最初的问题,假如在欧式空间中有两条平行线:

只要C不等于D,他们永远不会相交。
现在我们使用齐次坐标系来重写这两条线:

很容易发现,这两条线在(x, y, 0) 初相交,也就是无限远处。
齐次坐标在计算机视觉处理上非常有用,比如把3D空间投影到屏幕上(2D)。
原文:http://www.songho.ca/math/homogeneous/homogeneous.html
2. 向量与齐次坐标
一个n维向量用齐次坐标表示为一个n+1维向量。
(x1,x1,...,xn)->(wx1,wx2,...,wxn,w),齐次向量的表示不是唯一的,例如齐次坐标[8,4,2]与[4,2,1]都表示点(4,2).
3.齐次坐标的应用
利用齐次坐标可以用矩阵运算,把二维、三维或高维空间点集从一个坐标系转换到另一个坐标系,实现了方便的数学计算。
opengl中相关的计算机图形变换矩阵之:齐次坐标 (摘编)的更多相关文章
- opengl中相关的计算机图形变换矩阵之:模型视图几何变换
3. 二维变换矩阵 x' a11 a12 a13 x a11x a12y a13z y' = a21 a22 a23 y = a21x a22y a2 ...
- 浅谈 OpenGL 中相关阻塞问题
昨天我遇到一个问题,问题如下: 我使用了延迟渲染,我的渲染流程是:Pass1 --> CUDA并行计算 -->Pass2 CUDA并行计算中需要使用Pass1渲染生成的两张纹理,然而我在G ...
- OpenGL中glPushMatrix和glPopMatrix的原理
glPushMatrix.glPopMatrix操作事实上就相当于栈里的入栈和出栈. 很多人不明确的可能是入的是什么,出的又是什么. 比如你当前的坐标系原点在你电脑屏幕的左上方.如今你调用glPush ...
- OpenGL中坐标系的理解(一)
在OpenGL中,存在着至少存在着三种矩阵,对应着函数glMatrixMode()的三个参数:GL_MODELVIEW,GL_PROJECTION,GL_TEXTURE. 以下主要描述GL_MODEL ...
- Bullet物理引擎在OpenGL中的应用
Bullet物理引擎在OpenGL中的应用 在开发OpenGL的应用之时, 难免要遇到使用物理来模拟OpenGL中的场景内容. 由于OpenGL仅仅是一个关于图形的开发接口, 因此需要通过第三方库来实 ...
- OpenGL中平移、旋转、缩放矩阵堆栈操作
在OpenGL中,图元的几何变换均为线性变换,通过矩阵变换实现.OpenGL中的坐标用齐次坐标表示,即(x,y,z)表示成(x',y',z',h),其中x=x'/h; y=y'/h; z=z'/h. ...
- OpenGL中各种坐标系的理解[转]
OPENGL坐标系可分为:世界坐标系和当前绘图坐标系. 世界坐标系:在OpenGL中,世界坐标系是以屏幕中心为原点(0, 0, 0),且是始终不变的.你面对 屏幕,你的右边是x正轴,上面是y正轴,屏幕 ...
- (转)思考:矩阵及变换,以及矩阵在DirectX和OpenGL中的运用问题:左乘/右乘,行优先/列优先,...
转自:http://www.cnblogs.com/soroman/archive/2008/03/21/1115571.html 思考:矩阵及变换,以及矩阵在DirectX和OpenGL中的运用1. ...
- 计算机图形学OpenGL中的glLoadIdentity、glTranslatef、glRotatef原理,用法 .(转)
单位矩阵 对角线上都是1,其余元素皆为0的矩阵. 在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的1,我们称这种矩阵为单位矩阵. 它是个方阵,除左上角到右下角的对角线(称为主对角线)上的元素 ...
随机推荐
- Linux学习笔记(14)linux在6.x和7.x系列的安装与基本使用区别
关键词,centos7 centos6.x安装与使用:https://www.cnblogs.com/gered/p/9440551.html centos7.x安装与使用(本文)转自:https:/ ...
- spring+redis实例(二)
这一篇redis实例是基于序列化储存-(写入对象,读取对象) 在spring+redis(一)中我们介绍了在spring中怎么去操作储存redis,基于string的储存,今天我们介绍一下redis基 ...
- c++primer chapter one
一个函数的定义包含四个部分:返回类型(return type),函数名(function name),一个括号包含的形参列表(parameter,允许为空)以及函数体(function body). ...
- AppCan适配问题
使用AppCan调试中心时,屏幕适配是个问题,经过多次调试总结出如下经验: 1,使用HD+(1560 x 720):显示错乱 2,使用FHD+ (2340 x 1080):显示错乱 3,HD (128 ...
- Linux学习大纲(高人整理)
1.Linux初级 1.1 OS操作系统的原理 1.2 了解常用命令 开机关机 时间管理:date cal clock 1.3 目的结构.目的管理 树形结构 tree cd 1.4 文件管理.文件查找 ...
- day 14 装饰器
装饰器:装饰,装修,房子就可以住,如果装修,不影响你住,而且体验更加,让你生活中增加了很多功能:洗澡,看电视,沙发.器:工具.开放封闭原则:开放:对代码的拓展开放的, 更新地图,加新枪,等等.封闭:对 ...
- .net core 调用webservice
原文:.net core 调用webservice 1.点击core项目添加链接的服务 2.键入对应的webservice地址,下载对应的代理服务 4.由于.net core 代理类只支持异步方法 ...
- Spring Boot缓存注解@Cacheable、@CacheEvict、@CachePut使用
从3.1开始,Spring引入了对Cache的支持.其使用方法和原理都类似于Spring对事务管理的支持.Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该 ...
- vue中如何开发插件
1.vue中提供了install方法用来开发插件 官方:Vue.js 的插件应该有一个公开方法 install.这个方法的第一个参数是 Vue 构造器,第二个参数是一个可选的选项对象. 2.我的插件目 ...
- SSH自动登录config文件配置
title: SSH自动登录config文件配置 comments: false date: 2019-08-19 19:29:13 description: 更方便的 ssh 操作??? categ ...