[Luogu P3825] [NOI2017] 游戏 (2-SAT)

题面

题面较长,略

分析

看到这些约束,应该想到这是类似2-SAT的问题。但是x地图很麻烦,因为k-SAT问题在k>2的时候是NPC问题,所以不能直接做。

观察到\(d \leq 8\),我们可以直接枚举每个x地图可以让哪些车使用,然后把它转换成标准的2-SAT问题。由于可以用车bc,ac已经覆盖了所有情况,每个x地图只可能是种类A或种类B,枚举的时间复杂度\(2^d\)

对于枚举的每一种情况,我们现在已经得到了每个地图适合哪些车参加,然后考虑建图。

定义若每个地图可以参加的车种类为x和y,第一种车为x,y中字典序较小的,第二种车为字典序较大的。把每个地图拆成两个点,第一个点表示第一种车,第二个点表示第二种车

然后是限制

1.如果限制i的第一个地图\(a_i\)不适合型号为\(x_i\)的车,那么不做任何操作

2.如果限制i的第二个地图\(b_i\)不适合型号为\(y_i\)的车,那么\(a_i\)场不能选\(h_i\),只能选\(x_i\)外符合条件的另一辆车,\(b_i\)场只能选除\(y_i\)外符合条件的另一辆车。两辆车对应的点之间连边即可

3.如果1,2的情况都满足,只需要判断一下可以选的车即可,细节比较复杂,见代码

建完图之后跑2-SAT即可,输出答案的时候注意判断一下这个点对应的车种类到底是A,B还是C

时间复杂度\(O(2^d(n+m))\)

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
#define maxn 100000
using namespace std;
int n,m,d;
char s[maxn+5]; vector<int>E[maxn*2+5];
void add_edge(int u,int v){
E[u].push_back(v);
} int dfn[maxn*2+5];
int low[maxn*2+5];
stack<int>st;
int cnt=0,tim=0;
int bel[maxn*2+5];
bool ins[maxn*2+5];
void tarjan(int x){
dfn[x]=low[x]=++tim;
st.push(x);
ins[x]=1;
for(int y : E[x]){
if(!dfn[y]){
tarjan(y);
low[x]=min(low[x],low[y]);
}else if(ins[y]){
low[x]=min(low[x],dfn[y]);
}
}
if(low[x]==dfn[x]){
cnt++;
int y;
do{
y=st.top();
st.pop();
ins[y]=0;
bel[y]=cnt;
}while(y!=x);
}
} int cntx;
int all_pos[maxn+5];
int a[maxn+5],b[maxn+5];
char h1[maxn+5],h2[maxn+5];
void ini(){
cnt=0;
tim=0;
for(int i=1;i<=n*2;i++) E[i].clear();
for(int i=1;i<=n*2;i++) dfn[i]=low[i]=bel[i]=ins[i]=0;
while(!st.empty()) st.pop();
}
void make_graph(int bin){
for(int i=1;i<=d;i++){
if(bin&(1<<(i-1))) s[all_pos[i]]='A';
else s[all_pos[i]]='B';
}
for(int i=1;i<=m;i++){
if(h1[i]==s[a[i]]) continue;//第a[i]位不能选h1[i]
else if(h2[i]==s[b[i]]){// 第b[i]位不能选h2[i]
//判断一下当前选的车按字典序是第一辆还是第二辆
if(h1[i]=='C'||(h1[i]=='B'&&s[a[i]]=='C')) add_edge(a[i]+n,a[i]); //规则中选C,或规则中选B且不能选C
else add_edge(a[i],a[i]+n) ;
}else{
int add1,add2;
if(h1[i]=='C'||(h1[i]=='B'&&s[a[i]]=='C')) add1=n;
else add1=0;
if(h2[i]=='C'||(h2[i]=='B'&&s[b[i]]=='C')) add2=n;
else add2=0;
add_edge(a[i]+add1,b[i]+add2);
add_edge(b[i]+n-add2,a[i]+n-add1);
}
}
}
bool check(){
for(int i=1;i<=n*2;i++){
if(!dfn[i]) tarjan(i);
}
for(int i=1;i<=n;i++){
if(bel[i]==bel[i+n]) return 0;
}
return 1;
}
void print_ans(){
for(int i=1;i<=n;i++){
if(bel[i]<bel[i+n]){
if(s[i]=='A') putchar('B');//BC的第1个是B
else putchar('A'); //AC或AB的第1个是A
}else{
if(s[i]=='C') putchar('B');//AB的第2个是B
else putchar('C'); //BC或AC的第2个是A
}
}
}
int main(){
char tmp1[2],tmp2[2];
scanf("%d %d",&n,&d);
scanf("%s",s+1);
for(int i=1;i<=n;i++){
if(s[i]=='x'){
cntx++;
all_pos[cntx]=i;
}
s[i]=s[i]-'a'+'A';
}
scanf("%d",&m);
for(int i=1;i<=m;i++){
scanf("%d %s %d %s",&a[i],tmp1,&b[i],tmp2);
h1[i]=tmp1[0];
h2[i]=tmp2[0];
}
for(int bin=0;bin<(1<<d);bin++){
//暴力枚举x是哪一种,注意b,c和a,c就可以覆盖x的三种取值
//所以只要枚举a,b,c
ini();
make_graph(bin);
if(check()){
print_ans();
return 0;
}
}
printf("-1");
}

[Luogu P3825] [NOI2017] 游戏 (2-SAT)的更多相关文章

  1. Luogu P3825 [NOI2017]游戏

    这道题看上去NPC啊,超级不可做的样子. 我们先分析一下简单的情形:没有\(x\)地图 此时每个地图由于限制掉一种汽车,那么显然只会有两种选择. 再考虑到限制的情况,那么大致做法就很显然了--2-SA ...

  2. P3825 [NOI2017]游戏

    题目 P3825 [NOI2017]游戏 做法 \(x\)地图外的地图好做,模型:\((x,y)\)必须同时选\(x \rightarrow y,y^\prime \rightarrow x^\pri ...

  3. Luogu 3825 [NOI2017]游戏

    Luogu的spj现在挂了,要去其他OJ提交. 2-SAT 发现如果不考虑$x$的情况,这就成为一个2-SAT的裸题了,我们有$O(n + m)$的方法可以解决它. 那加上$x$的情况怎么弄……岂不是 ...

  4. 洛谷P3825 [NOI2017]游戏(2-SAT)

    传送门 果然图论的题永远建图最麻烦……看着题解代码的建图过程真的很珂怕…… 先不考虑地图$x$,那么每一个地图都只能用两种赛车,于是我们可以用2-SAT来搞,用$i$表示这个地图能用的第一辆车,$i' ...

  5. 洛谷 P3825 [NOI2017]游戏 【2-SAT+状压】

    UOJ和洛谷上能A,bzoj 8ms即WA,现在也不是知道为啥--因为我太弱了 先看数据范围发现d非常小,自然想到了状压. 所以先假装都是只能跑两种车的,这显然就是个2-SAT问题了:对于x场没有hx ...

  6. 并不对劲的bzoj4945:loj2305:uoj317:p3825[NOI2017]游戏

    题目大意 2-SAT,其中有\(d\)(\(d\leq 8\))个点是\(3-SAT\). 题解 枚举\(d\)个点不取三个中(假设三个为\(a,b,c\))的哪一个,然后整体变成做\(2-SAT\) ...

  7. 【BZOJ4945】[Noi2017]游戏 2-SAT

    [BZOJ4945][Noi2017]游戏 题目描述 题解:2-SAT学艺不精啊! 这题一打眼看上去是个3-SAT?哎?3-SAT不是NPC吗?哎?这题x怎么只有8个?暴力走起! 因为x要么不是A要么 ...

  8. [luogu]P1070 道路游戏[DP]

    [luogu]P1070 道路游戏 题目描述小新正在玩一个简单的电脑游戏.游戏中有一条环形马路,马路上有 n 个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针 ...

  9. 题解 洛谷 P3825 【[NOI2017]游戏】

    从题面中四元组\((i,h_i,j,h_j)\)限制选择车子型号,不难想到这题要用\(2-SAT\)解决. 考虑转化为\(2-SAT\)模型,发现除地图\(x\)外,其他地图都只有两种车子型号可以参加 ...

随机推荐

  1. Delphi-----接口请求,Get与Post

    unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms ...

  2. pandas、matplotlib、Numpy模块的简单学习

    目录 一.pandas模块 二.matplotlib模块 1.条形图 2. 直方图 3.折线图 4.散点图+直线图 三.numpy 一.pandas模块 pandas是BSD许可的开源库,为Pytho ...

  3. day03记 angular代码

    一.AngularJs AngularJS 是一个 JavaScript 框架.通过 指令 扩展了 HTML,且通过 表达式 绑定数据到 HTML. 1.四大特征 MVC模式.模块化.自动化双向数据绑 ...

  4. CSS3——PC以及移动端页面适配方法(响应布局)

    响应布局就是不同宽度应用不同的样式块,每个样式块对应的是该宽度下的布局方式,从而使页面适应不同宽度. <!DOCTYPE html> <html lang="en" ...

  5. Hybris commerce产品主数据的搜索API,批量返回若干主数据的值

    新建一个产品,identifier设置为i042416-1,创建之后立即能够在Backoffice里搜索出来: 等到Storefront的indexing做完之后,前台通过关键字i042416也能将这 ...

  6. CSS盒子模型(框模型)

     一.如何理解盒子模型  盒子模型(框模型)是css部分非常重要的一部分知识,CSS在处理网页的时候,认为每个元素都处在一个不可见的盒子中.盒子模型的构想,把所有的元素都想象成盒子,那么对网页进行布局 ...

  7. mobx状态管理快速入门

    1.mobx状态管理   安装: creact-react-app mobx  

  8. android 开发架构学习

    Android DataBinding(数据绑定)入门与实战 http://examplecode.cn/2018/07/20/android-databinding-01-introduction/ ...

  9. A* 算法求第 K 短路

    一种具有 \(f(n)=g(n)+h(n)\) 策略的启发式算法能成为 A* 算法的充分条件是: 搜索树上存在着从起始点到终了点的最优路径. 问题域是有限的. 所有结点的子结点的搜索代价值 \(> ...

  10. fengmiantu---